
Service de cardiologie / HUG

Colloque multidisciplinaire de formation continue, cardiologie et chirurgie cardio-vasculaire Genève, le 27 mai 2021

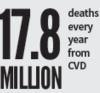
LDL-cholestérol: l'âge du silence

Prof. François Mach, MD, FESC
Service de Cardiologie
Hôpitaux Universitaires de Genève
francois.mach@hcuge.ch

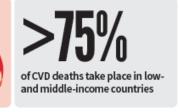
Aucun conflit d'intérêt

Tous mes honoraires pour conférences ou conseils scientifiques sont versés à la Fondation GEcor ou au Département de Médecine des HUG.

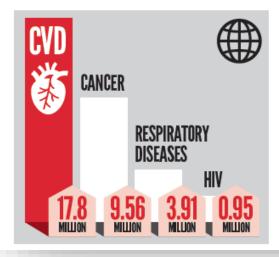
Le service de cardiologie a reçu des financements de firmes pharmaceutiques pour la recherche clinique, toujours via des contrats signés par le Département de Médecine des HUG.




Maladies cardiovasculaires


CARDIOVASCULAR DISEASE THE WORLD'S NUMBER 1 KILLER

Cardiovascular diseases are a group of disorders of the heart and blood vessels, commonly referred to as heart disease and stroke.



GLOBAL CAUSES OF DEATH RISK FACTORS FOR CVD

Pressure

Cholesterol

Overweight

Disease

Tobacco

Physical Inactivity

Pollution

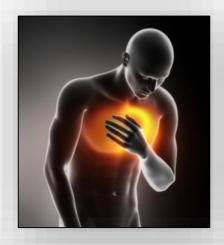
Harmful use of alcohol

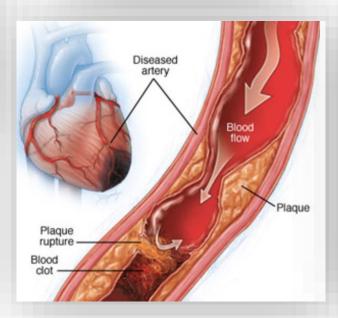
Athérosclérose

Coronary Artery Disease

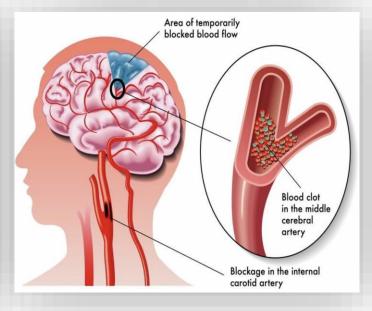
Leading cause of mortality

Happened globally

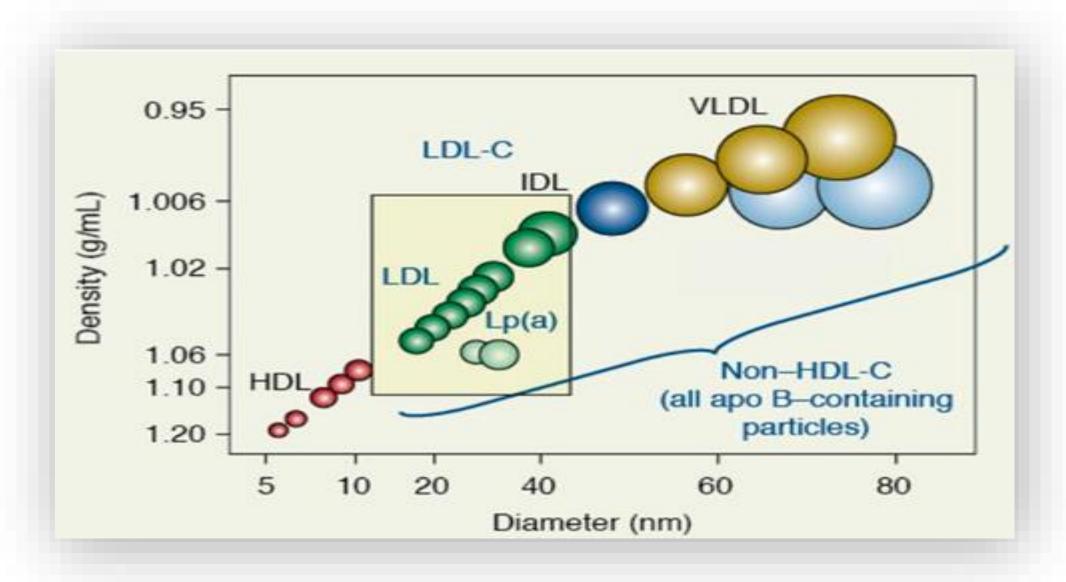

Increase new cases


Leading cause of loss of productivity

TRUE PANDEMIC


WHO (2009):

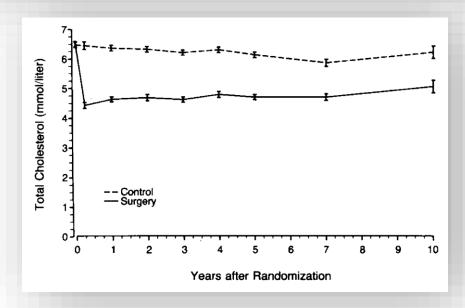
"CHD is now the leading cause of death worldwide; it is on the rise and has become a true pandemic that <u>respects no borders</u>"



Caracteristiques des lipoprotéines

Lowering cholesterol lowers CV events: first evidence

THE NEW ENGLAND JOURNAL OF MEDICINE


946

Oct. 4, 1990

EFFECT OF PARTIAL ILEAL BYPASS SURGERY ON MORTALITY AND MORBIDITY FROM CORONARY HEART DISEASE IN PATIENTS WITH HYPERCHOLESTEROLEMIA

Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH)

Henry Buchwald, M.D., Ph.D., Richard L. Varco, M.D., Ph.D., John P. Matts, Ph.D., John M. Long, Ed.D., Laurie L. Fitch, M.P.H., Gilbert S. Campbell, M.D., Ph.D., Malcolm B. Pearce, M.D., Albert E. Yellin, M.D., W. Allan Edmiston, M.D., Robert D. Smink, Jr., M.D., Henry S. Sawin, Jr., M.D., Christian T. Campos, M.D., Betty J. Hansen, R.N., Naip Tuna, M.D., Ph.D., James N. Karnegis, M.D., Ph.D., Miguel E. Sanmarco, M.D., Kurt Amplatz, M.D., Wilfredo R. Castaneda-Zuniga, M.D., David W. Hunter, M.D., Joseph K. Bissett, M.D., Frederic J. Weber, M.D., Ph.D., James W. Stevenson, M.D., Arthur S. Leon, M.D., Thomas C. Chalmers, M.D., and the POSCH Group*

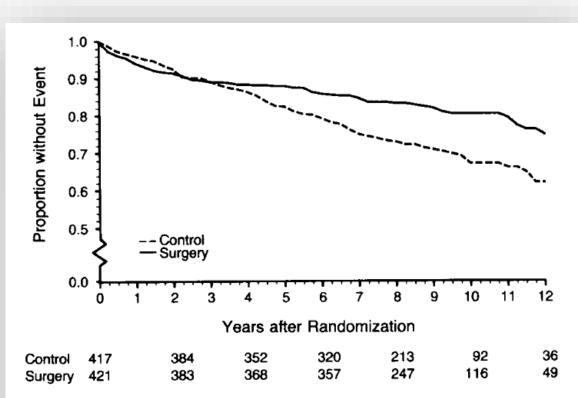
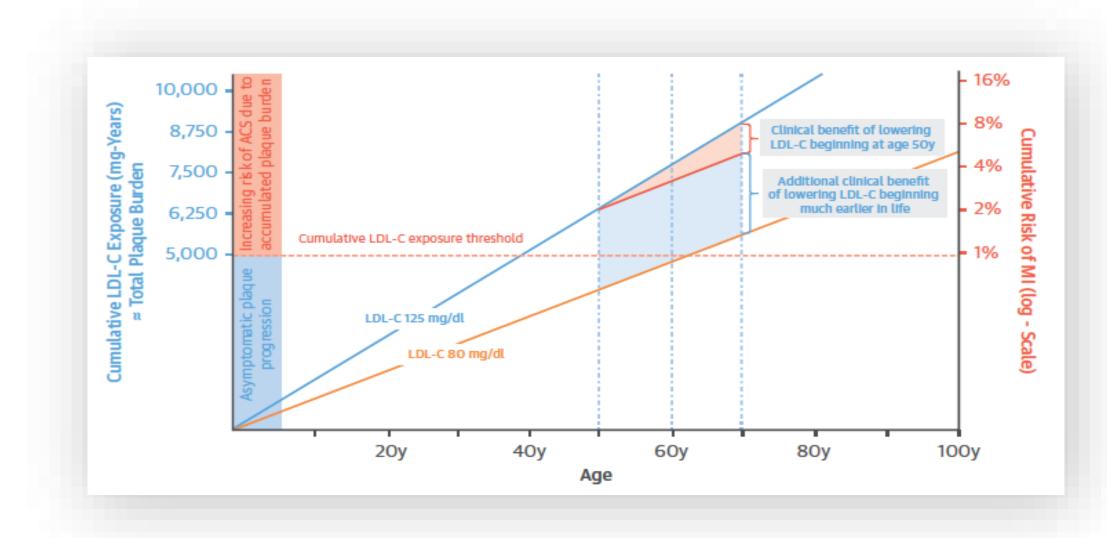
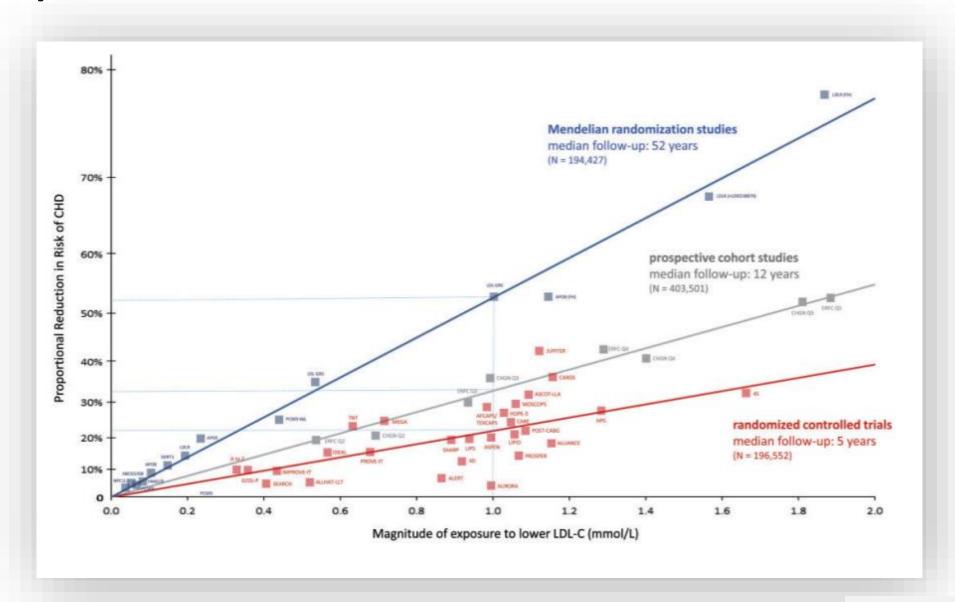
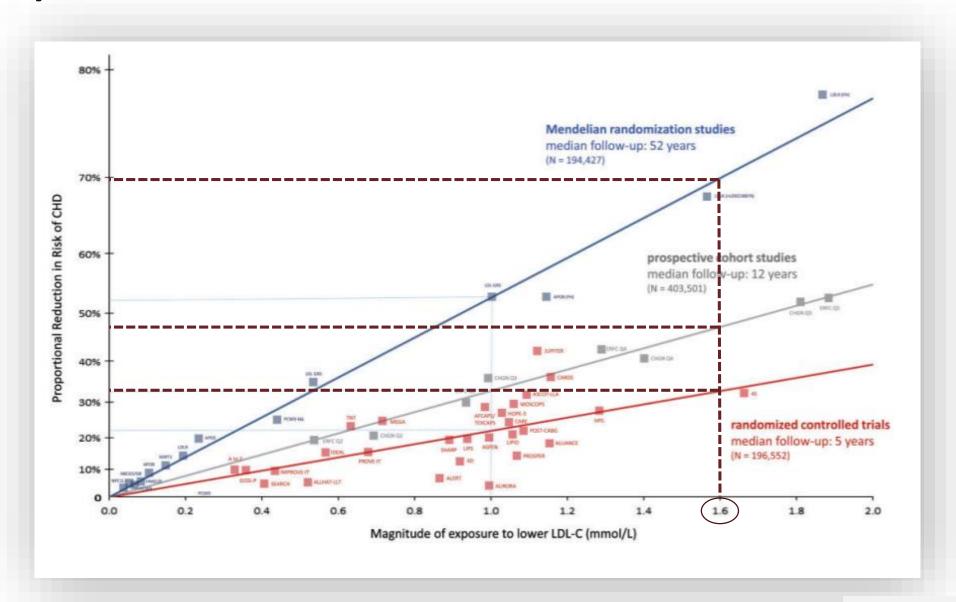




Figure 2. Confirmed Myocardial Infarction and Death Due to Atherosclerotic Coronary Heart Disease as a Combined End Point ("Event") in the Study Groups.


Time-Exposure to LDL-C

Time-Exposure to low LDL-C

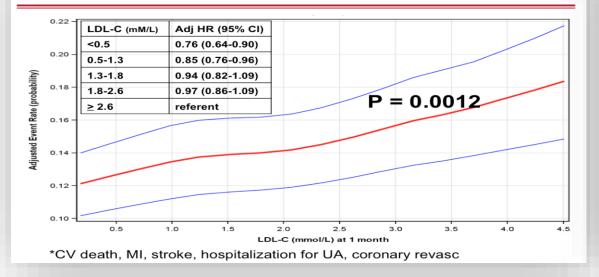
Time-Exposure to low LDL-C

Evidence for efficacy of LDL-lowering therapies down to below 1.4 mmol/L (55 mg/dL)

Source of evidence	Mean reduction in LDL cholesterol; mmol/L [mg/dL]	Outcome	RR (95% CI)
CTT meta-analysis¹ (high-intensity vs standard statin; subgroup <2.0 mmol/L)	1.71 [66] vs 1.32 [50]	MI, CHD death, stroke, coronary revasc.	0.71 (0.56-0.91) [per mmol/L]
IMPROVE-IT ² (eze plus statin vs statin)	1.80 [70] vs 1.40 [54]	CV death, MI, stroke, UA, coronary revasc	0.94 (0.89-0.99)
FOURIER ³ (evolocumab plus high-dose statin ± eze vs high-dose statin ± eze)	2.37 [92] vs 0.78 [30]	CV death, MI, stroke, UA, coronary revasc	0.85 (0.79-0.92)
ODYSSEYOUTCOMES ⁴ (alirocumab plus high-dose statin ± eze vs high-dose statin ± eze)	2.37 [92] vs 1.37 [53]	MI, CHD death, stroke, UA	0.85 (0.78-0.93)

¹Lancet <u>2010</u>;376:1670; ²NEJM <u>2015</u>;372:2387; ³NEJM <u>2017</u>;376:1713; ⁴NEJM <u>2018</u>;379:2097

PCSK9 mAb: Efficacy and safety


Clinical efficacy and safety of achieving very low LDL-CLDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab (FOURIER trial)

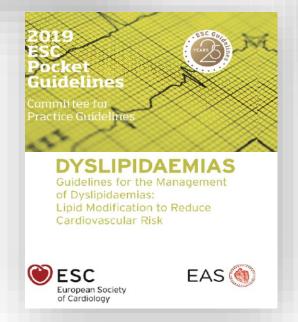
Robert P Giugliano, Terje R Pedersen, Jeong-Gun Park, Gaetano M De Ferrari, Zbigniew A Gaciong, Richard Ceska, Kalman Toth, Ioanna Gouni-Berthold, Jose Lopez-Miranda, François Schiele, François Mach, Brian Ott, Estella Kanevsky, Armando Lira Pineda, Ransi Somaratne, Scott M Wasserman, Anthony C Keech, Peter S Sever, Marc S Sabatine; on behalf of the FOURIER Investigators

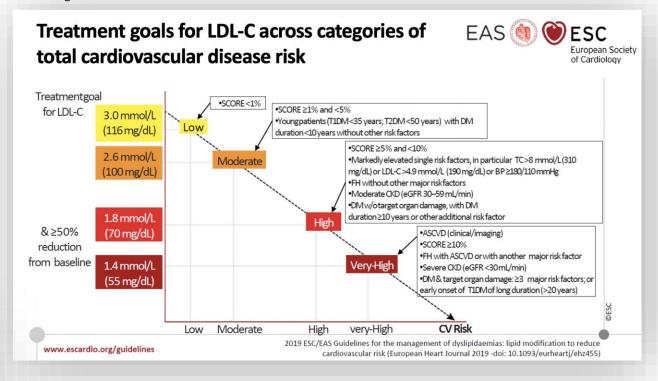
Primary Efficacy Endpoint*

Exploratory Analysis – 1 Achieved LDL-C <0.4 mM/L*

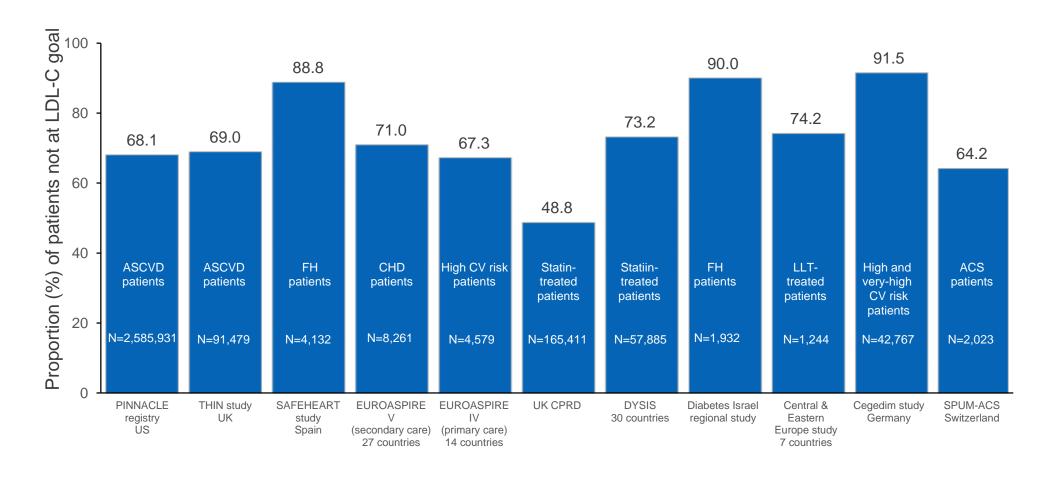
	LDL-C at	4 Weeks		
	<0.4 (N=1335)	≥2.6 (N=4395)		
	n (%)	n (%)	Adjusted HR (95% CI)	P
Efficacy Endpoints				
CVD, MI, stroke, UA, cor revasc	105 (7·9)	521 (11·9)	0·71 (0·56-0·89)	0.003
CV death, MI, stroke	66 (4·9)	345 (7·8)	0·66 (0·50-0·88)	0.005
Safety Endpoints				
Serious AE	313 (23·4)	1022 (23·3)	0·96 (0·81-1·13)	0.63
AE -> drug DC	42 (3·1)	149 (3·4)	0·89 (0·60-1·32)	0.56

ESC/EAS 2019 Lipid Guidelines





2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk


The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)

Authors/Task Force Members: François Mach* (Chairperson) (Switzerland), Colin Baigent* (Chairperson) (United Kingdom), Alberico L. Catapano¹* (Chairperson) (Italy), Konstantinos C. Koskinas (Switzerland), Manuela Casula¹ (Italy), Lina Badimon (Spain), M. John Chapman¹ (France), Guy G. De Backer (Belgium), Victoria Delgado (Netherlands), Brian A. Ference (United Kingdom), Ian M. Graham (Ireland), Alison Halliday (United Kingdom), Ulf Landmesser (Germany), Borislava Mihaylova (United Kingdom), Terje R. Pedersen (Norway), Gabriele Riccardi¹ (Italy), Dimitrios J. Richter (Greece), Marc S. Sabatine (United States of America), Marja-Riitta Taskinen¹ (Finland), Lale Tokgozoglu¹ (Turkey), Olov Wiklund¹ (Sweden)

Despite efficacious LDL-C lowering therapies: High and very high-risk patients are failing to achieve LDL-C goals

DA VINCI study demonstrates current gaps in reaching 2016 and 2019 ESC/EAS LDL-C goals

Overall, 54% attained overall risk-based 2016 goal

 Low risk: 63%; moderate risk: 75%; high risk: 63%; very high risk: 39%

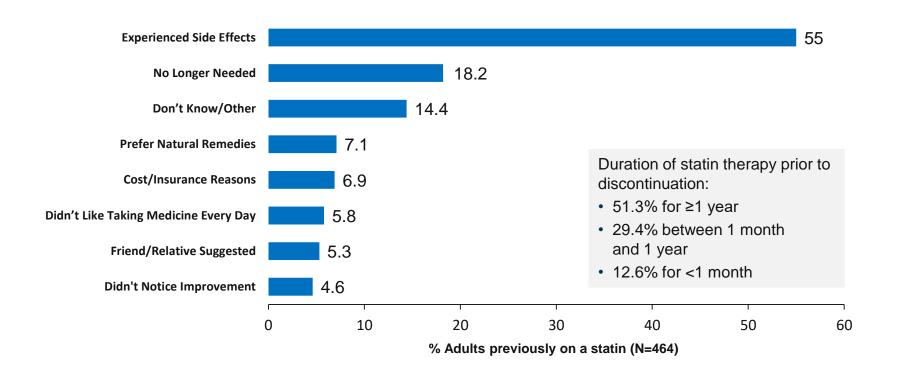
Only **33%** attained overall **2019 goal**

In patients with established ASCVD,

2019 goal attainment was approximately half that of 2016

(18% vs 39%, respectively)

Potential reasons for failure to achieve ESC/EAS guideline recommended LDL-C values


- Lack of HCP familiarity with guidelines
- High cost of medications such as PCSK9 mAb inhibitors

- Patient reluctance to be treated with high-intensity LLT
- Concern about statin-related AEs

The authors concluded that "even with optimized statins, greater utilization of non-statin LLT is likely needed to reduce these gaps for patients at highest risk"

Perceived side effects are the leading cause of statin discontinuation

Patient-reported reasons for statin discontinuation: insights from PALM registry

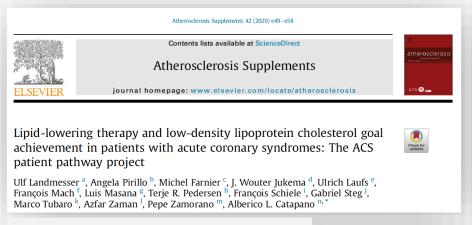
Therapy interruptions are observed with monoclonal antibodies directed against PCSK9

Retrospective analysis of 6151 patients from a commercial insurance database in the United States initiating PCSK9mAb inhibitors

52.2% of patients

experienced an interruption in PCSK9mAb inhibitor therapy of at least 30 days within 1 year of its initiation

 Only 63% remained on a PCSK9mAb inhibitor 1 year after its initiation


44% of patients

experienced an interruption in all lipid-lowering therapy by 1 year of initiation of PCSK9mAb inhibitor

 27% were no longer on any lipid-lowering therapy
 1 year after initiating a
 PCSK9mAb inhibitor

Research on ACS management

Atherosclerosis 2020;40:e49-e58

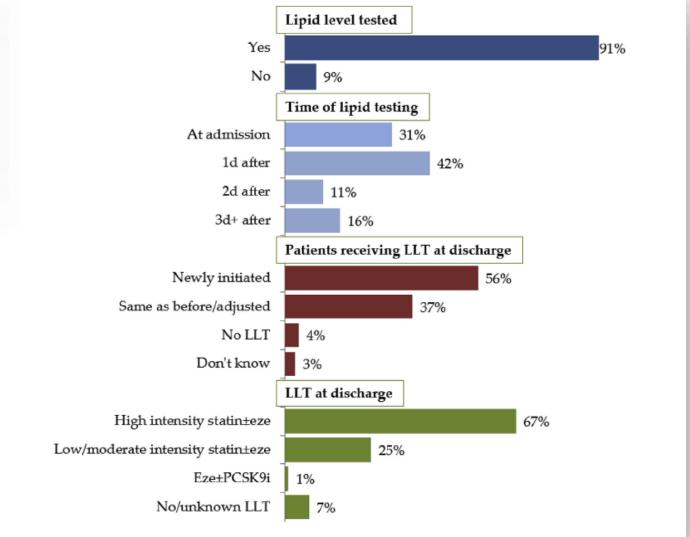


Fig. 1. Percentages of patients who had lipid levels tested and pharmacological approaches during acute phase. LIT: lipid-lowering therapy.

Research on ACS management

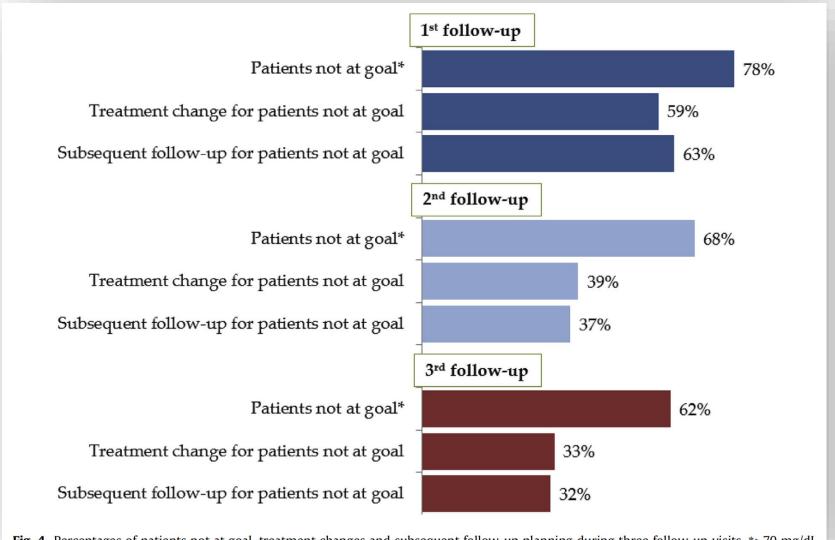
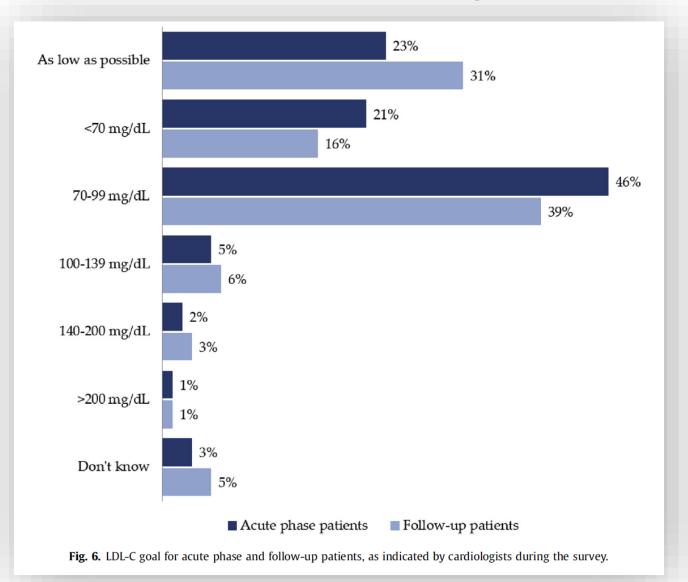
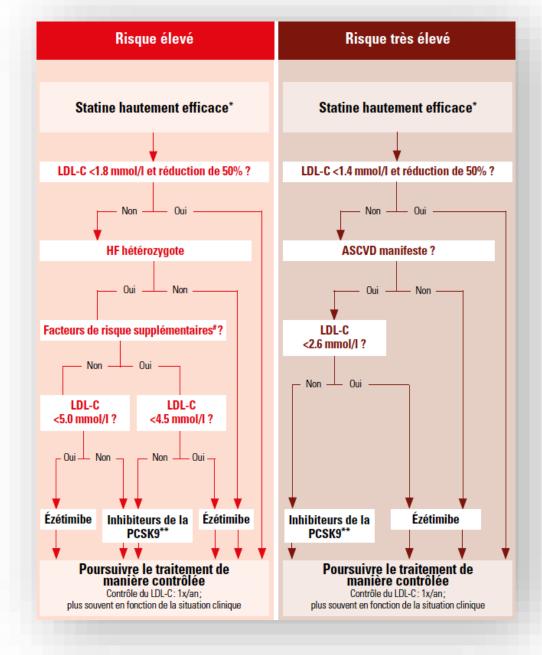
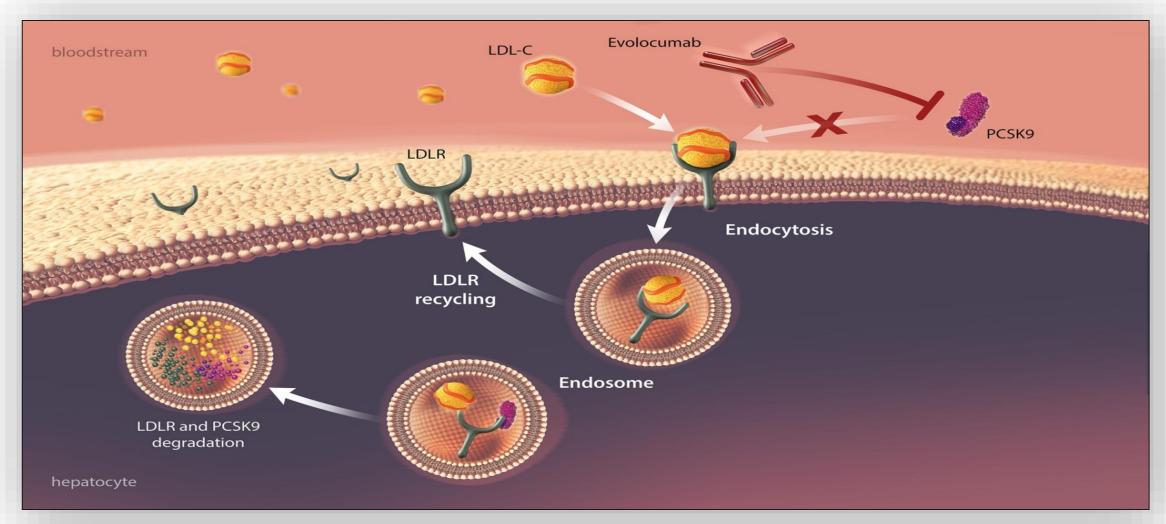
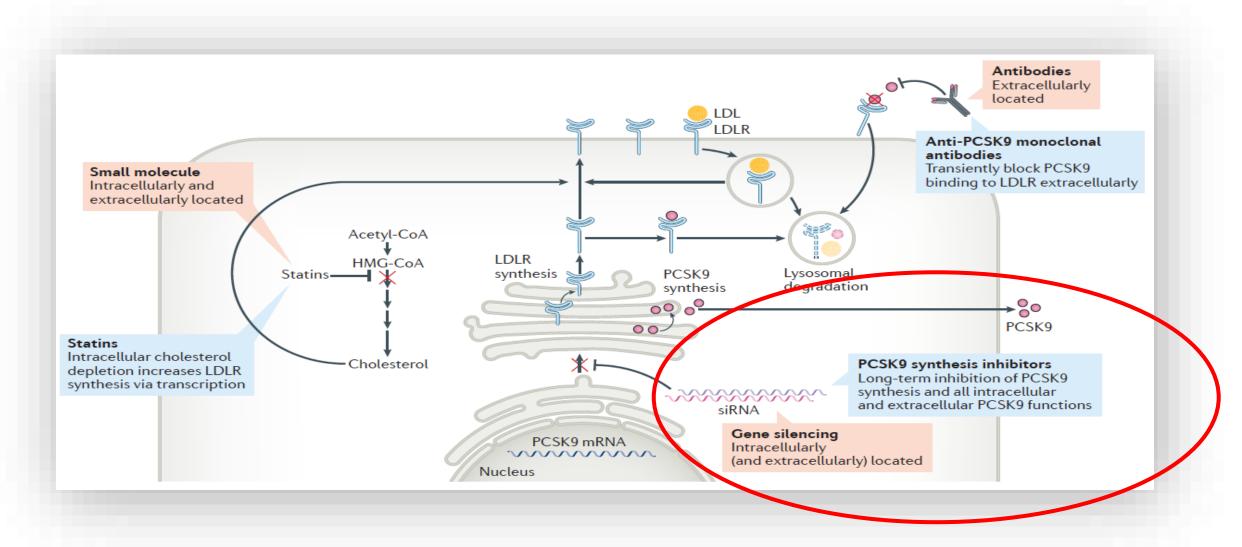
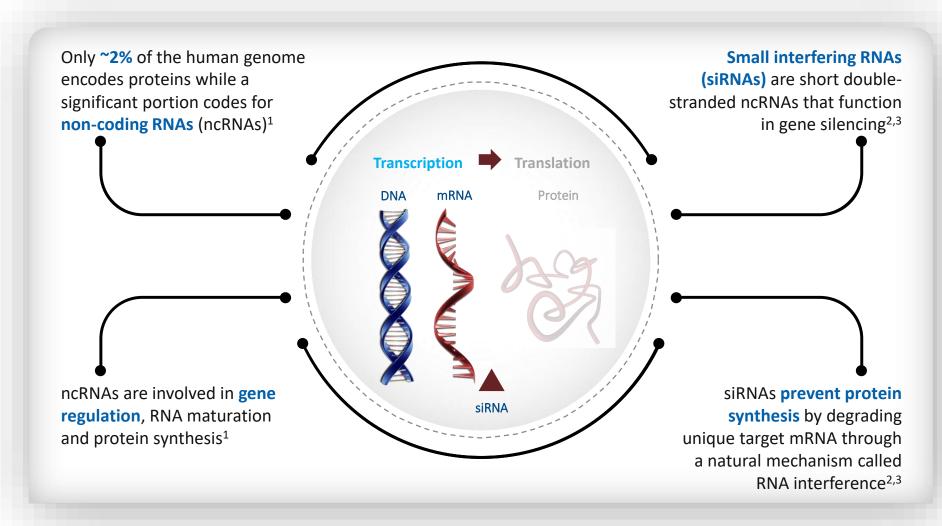




Fig. 4. Percentages of patients not at goal, treatment changes and subsequent follow-up planning during three follow-up visits. *>70 mg/dL.

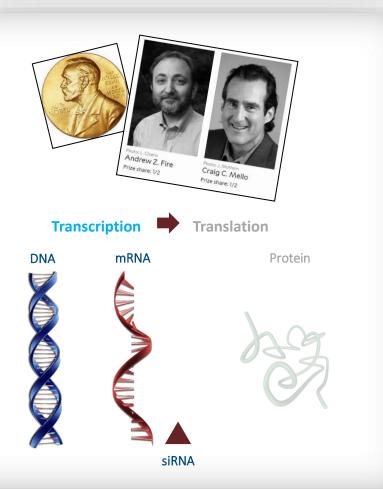

Research on ACS management


AGLA/GSLA lipid guidelines (www.agla.ch)

Fully human monoclonal antibody against PCSK9 inhibits PCSK9/LDL-R interaction



Approaches to reduce LDL-C levels


Gene-Protein Synthesis

Non-coding RNAs

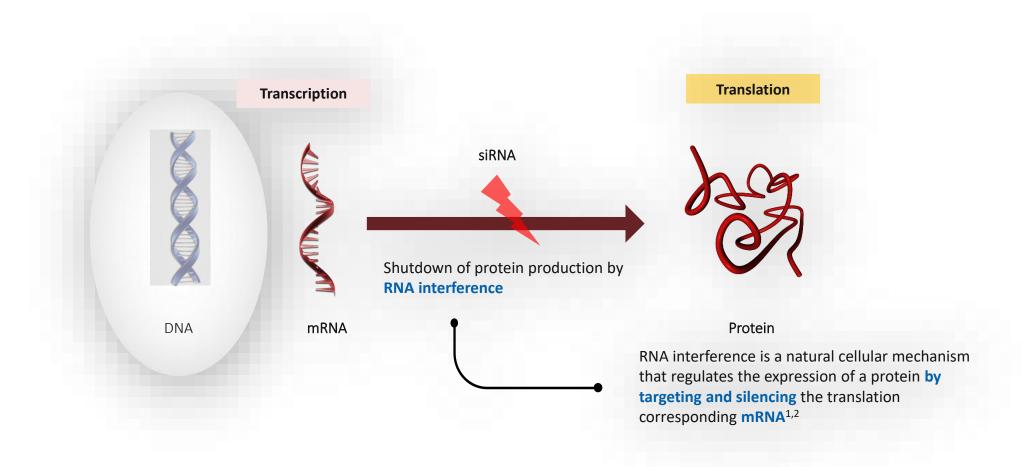
RNA Therapeutics

Synthetic small RNA

In 2006, Andrew Fire and Craig Mello were awarded the Nobel Prize for Physiology or Medicine for their discovery of RNAi, initiating an era of RNA therapeutics (highly specific drugs)¹

RNAi therapeutics harness the natural biologic pathway of RNAi to regulate expression of specific genes²

Advances in RNA therapeutics focus on gene silencing using synthetic short ncRNA, including siRNA, to regulate and/or silence target genes^{2,3}

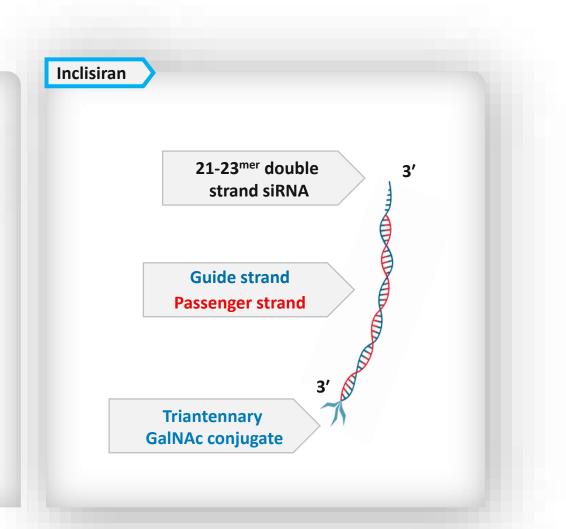

Synthetic siRNA targets a unique mRNA nucleotide sequence and can theoretically target any gene of interest²

¹The Nobel Prize in Physiology or Medicine 2006. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2006/summary

²Mol Ther Nucleic Acids. 2015;4:e252

³Cell Metab. 2018;27:714

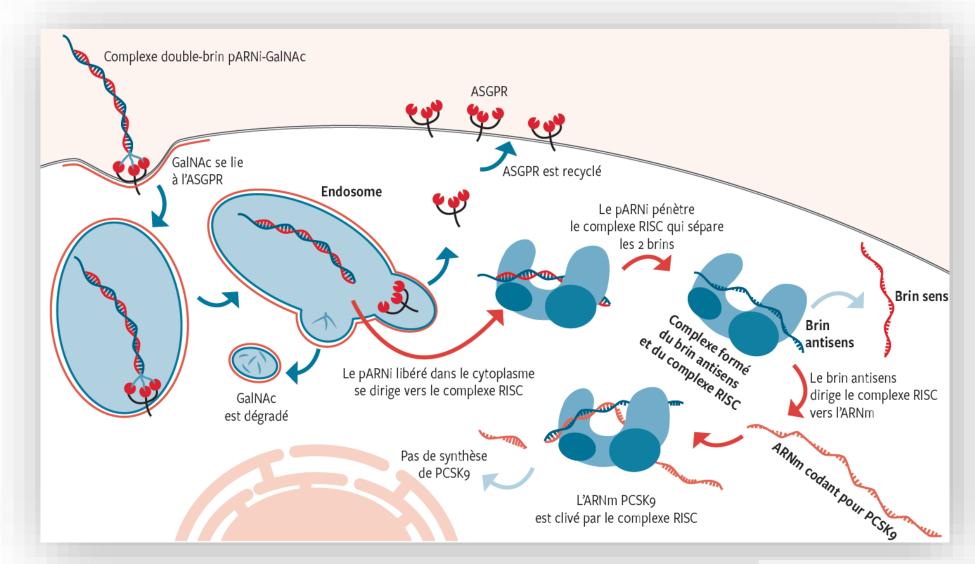
RNA interference enables a cell to specifically shut down protein production


What is inclisiran?

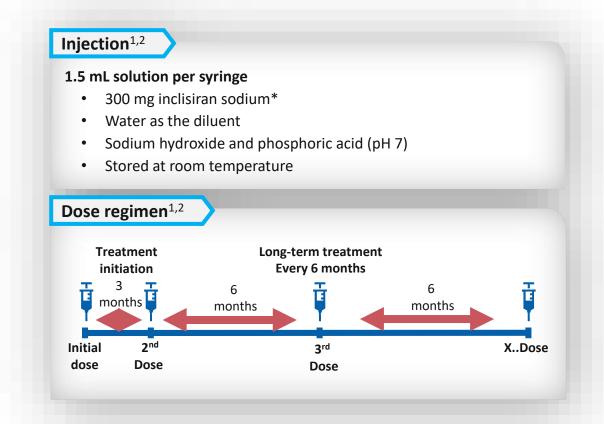
Small interfering RNA

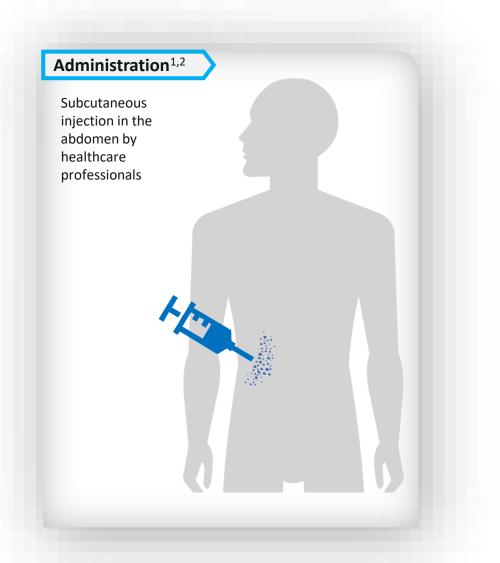
- Synthetic small interfering RNA (siRNA) conjugated with triantennary GalNAc carbohydrate^{1,2}
- Utilizes the natural RNA interference mechanism to degrade PCSK9 mRNA and prevent its translation to protein²

Chemical Modifications^{3,4}


- 2'-fluoro and 2'-O-methyl modifications to increase compound stability
- Backbone phosphodiester linkages modified with phosphorothioates to protect from degradation by liver exonucleases
- Triantennary GalNAc conjugation for targeted hepatic delivery

¹Circ Res. <u>2017</u>;120:1063 ²N Engl J Med. <u>2017</u>;376:41


Mechanism of action


GalNAc conjugation enables rapid uptake of inclisiran into hepatocytes via asialoglycoprotein receptor (ASGPR)

Inclisiran treatment

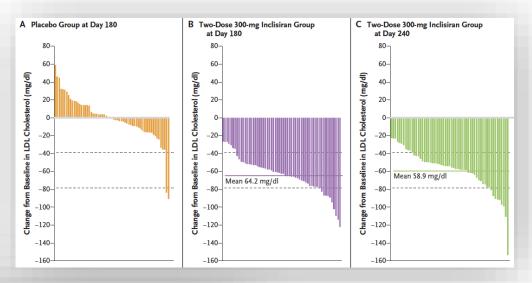
Dose & administration

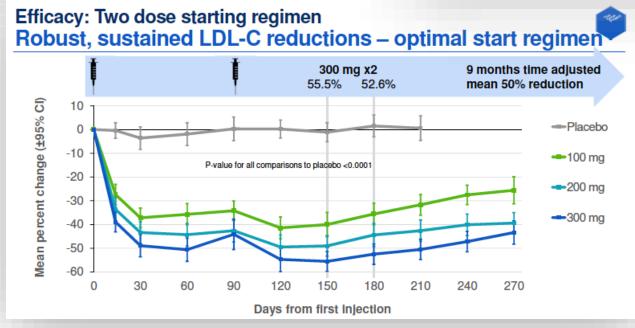
¹Curr Pharm Des. <u>2018</u>;24:3622; ²N Engl J Med. <u>2017</u>;376:4

Inclisiran clinical studies

ORION development program

Étude	Phase clinique	Patients (N)	Population étudiée	Durée de suivi	Critère de jugement	Référence ClinicalTrials.gov
ORION-1	П	500	ASCVD ou ASCVD RE	180 jours	Baisse du LDL-C	NCT02597127 ⁴⁰
ORION-2	II	4	HFHo	180 jours	Baisse du LDL-C	NCT02963311
ORION-3	II	490	ASCVD or ASCVD RE	48 mois	Baisse du LDL-C	NCT03060577
ORION-4	IIIb	15 000	ASCVD or ASCVD RE	60 mois	MACE	NCT03705234
ORION-5	III	45	HFHo	24 mois	Baisse du LDL-C	NCT03851705
ORION-6	1	24	Insuffisance hépatique	180 jours	Pharmacocinétique	NCT04765657
ORION-7	1	31	Insuffisance rénale	60 jours	Pharmacocinétique	NCT03159416 ⁴⁰
ORION-8	III	3700	ASCVD or ASCVD RE or HFHe/HFHo	36 mois	Baisse du LDL-C	NCT03814187
ORION-9	III	482	HFHe	18 mois	Baisse du LDL-C	NCT03814187
ORION-10	III	1561	ASCVD	18 mois	Baisse du LDL-C	NCT03399370 ¹⁷
ORION-11	III	1617	ASCVD or ASCVD RE	18 mois	Baisse du LDL-C	NCT03400800 ¹⁷
ORION-12	ı	48	Population saine	180 jours	QT et ECG	-
ORION-13	III	12	HFHo chez l'adolescent (de 12 à < 18 ans)	24 mois	Baisse du LDL-C	NCT04659863
ORION-14	I	40	Étude de recherche de dose	-	Baisse du LDL-C	NCT04774003
ORION-15	II	308	Étude de recherche de dose, ASCVD	270 jours	Baisse du LDL-C	NCT04666298
ORION-16	III	150	HFHe chez l'adolescent (de 12 à < 18 ans)	24 mois	Baisse du LDL-C	NCT04652726


Lowering PCSK9 with siPCSK9


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol

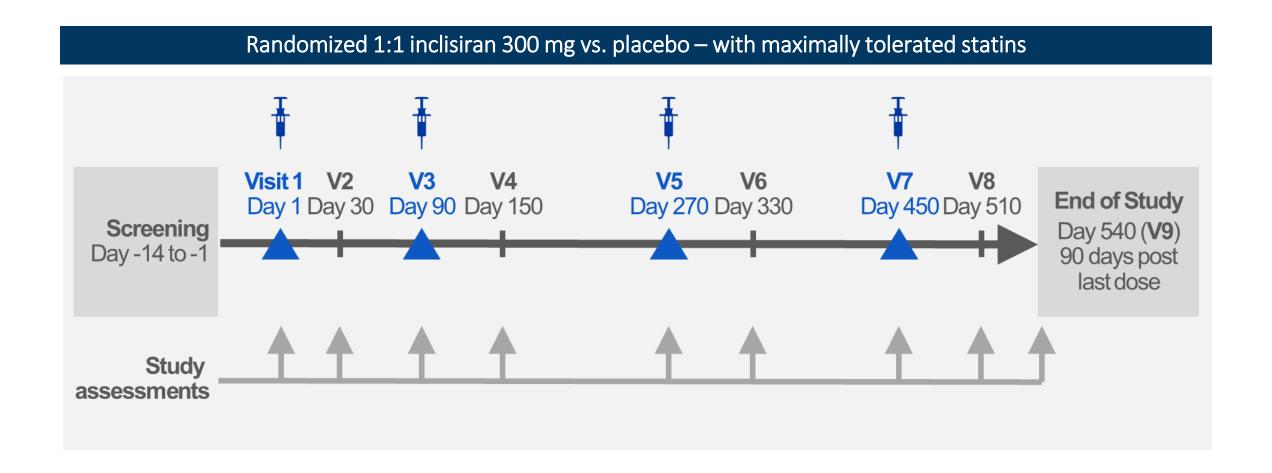
Kausik K. Ray, M.D., Ulf Landmesser, M.D., Lawrence A. Leiter, M.D., David Kallend, M.D., Robert Dufour, M.D., Mahir Karakas, M.D., Tim Hall, M.D., Roland P.T. Troquay, M.D., Traci Turner, M.D., Frank L.J. Visseren, M.D., Peter Wijngaard, Ph.D., R. Scott Wright, M.D., and John J.P. Kastelein, M.D., Ph.D.

Lowering PCSK9 with siPCSK9

The NEW ENGLAND JOURNAL of MEDICINE

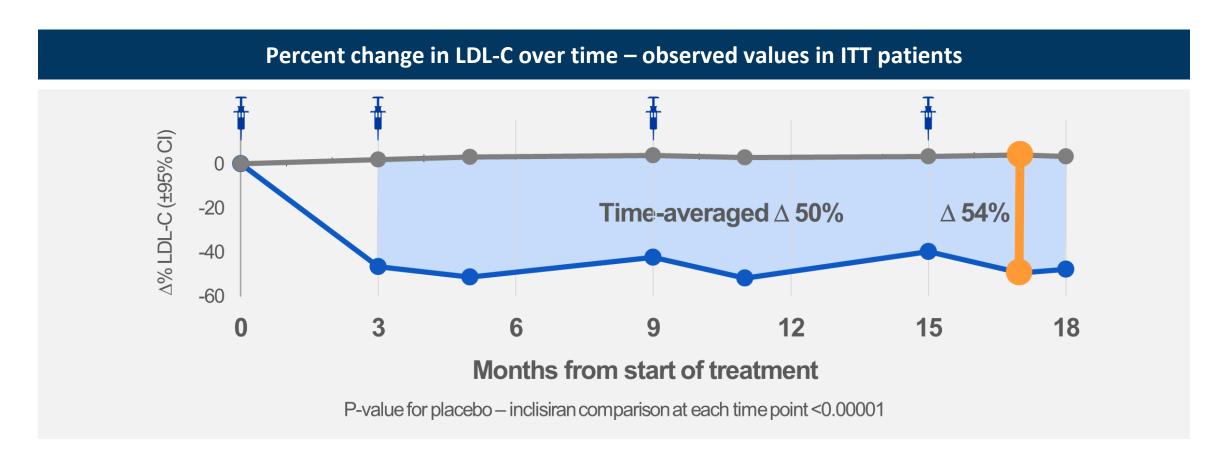
ORIGINAL ARTICLE

Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol


Kausik K. Ray, M.D., M.Phil., R. Scott Wright, M.D., David Kallend, M.D., Wolfgang Koenig, M.D., Lawrence A. Leiter, M.D., Frederick J. Raal, Ph.D., Jenna A. Bisch, B.A., Tara Richardson, B.A., Mark Jaros, Ph.D., Peter L.J. Wijngaard, Ph.D., and John J.P. Kastelein, M.D., Ph.D., for the ORION-10 and ORION-11 Investigators*

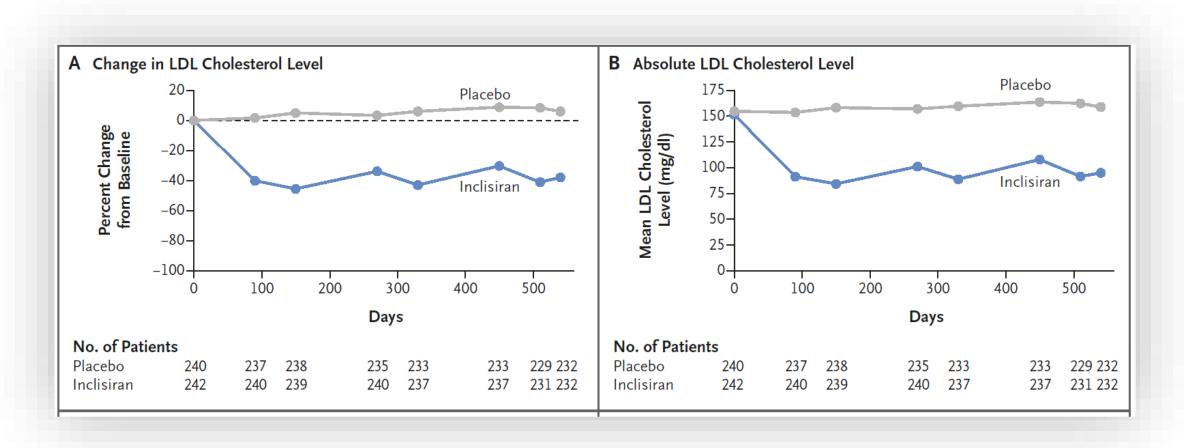
Efficacy and safety of Inclisiran vs placebo in patients with very high cardiovascular risk, with ASCVD or ASCVD-Risk Equivalent *

*Type-2 Diabetes, familial hypercholestereolemia or 10-year risk ≥20%


ORION-11: Study design

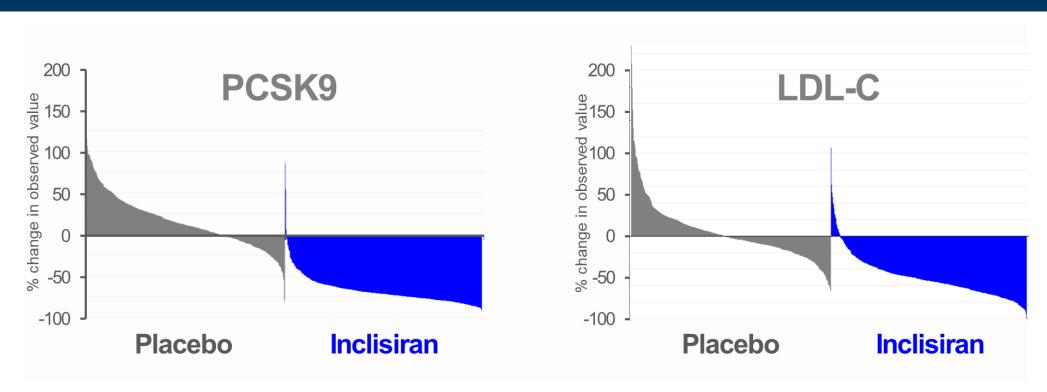
Eighteen months treatment and observation

ORION-11: Efficacy


Durable, potent and consistent effect over 18 months

1. All 95% confidence intervals are less than ±2% and therefore are not visible outside data points

ORION-11: Efficacy


Durable, potent and consistent effect over 18 months

ORION-11: Efficacy

Potent, consistent response to inclisiran

Individual patient responses contributing to primary endpoint – 17 months

ORION Phase III pooled analysis: Efficacy

Robust ↓LDL-C across pre-specified sub-populations

Subgroup	Inclisiran N	Placebo N	LS Mean Percent Difference in LDL-C			-c
Overall					ı	
Overall	1833	1827	•			-54.1
Sex						
Male	1226	1244	I ● I			-53.8
Female	607	583	⊦●⊣			-54.8
Age <65 yr or ≥65 yr						
<65 yr	853	884	H●⊣			-54.3
≥65 yr	980	943	H ● H			-53.7
Age <75 yr or ≥75 yr						
<75 yr	1593	1575	● 1			-54.0
≥75 yr	240	252	⊢●⊣			-55.0
Body mass index						
≤29.7	942	888	ı ● +			-51.6
>29.7	891	937	H ⊕ ⊣			-56.8
Race						
White	1670	1708	● +			-54.2
Black	130	102	⊢—	\dashv		-53.6
Other	33	17	⊢			-49.8
Baseline statin treatment						
On statin	1686	1675	•			-54.5
Not on statin	147	152	⊢●	\vdash		-48.8
Intensity of statin treatment						
High intensity statin	1356	1345	● H			-54.6
Not on high intensity statin	477	482	H●H			-52.7
Lipid management treatment (L	.MT)					
Any statin	1686	1675	•			-54.5
Other LMT but no statin	75	62	⊢—	4		-53.9
No LMT	72	90	\vdash	•		-45.6
Metabolic disease						
Diabetes	687	631	H - H			-56.1
Metabolic syndrome	499	526	H			-56.2
Neither	647	670	H	l	<u> </u>	-50.6
	-100.0	-75.0	-50.0	-25.0	0.0	25.0
			Inclisiran	better	Pla	cebo bett

Adverse event profile similar to placebo

Treatment Emergent Adverse Event (TEAE)	Placebo N = 807		Inclisiran N = 810	
Safety population ¹ – AEs in ≥5% patients				
Patients with at least one TEAE	655	(82%)	671	(83%)
Diabetes mellitus adverse events	94	(12%)	88	(11%)
Nasopharyngitis	90	(11%)	91	(11%)
Hypertension	54	(7%)	53	(7%)
Upper respiratory tract infection	49	(6%)	52	(6%)
Arthralgia	32	(4%)	47	(6%)
Osteoarthritis	40	(5%)	32	(4%)

^{1.} Safety population includes all patients who received at least 1 dose of study medication 2. Other TEAEs reported with lower frequencies than 5% in any group had no clinically meaningful differences

Injection site AEs localized, mostly mild and transient

Injection site TEAEs	Plac	cebo	Inclisiran		Difference
Safety population ¹	N =	807	N =		
Protocol-defined skin event	4	(0.50%)	38	(4.69%)	4.19%
(Reaction, erythema, rash, pruritus, hypersensitivity)					
Mild	3	(0.37%)	23	(2.84%)	2.46%
Moderate	1	(0.13%)	15	(1.85%)	1.73%
Severe	0	(0.0%)	0	(0.0%)	
Persistent	0	(0.0%)	0	(0.0%)	

^{1.} Safety population includes all patients who received at least 1 dose of study medication

No evidence of liver, kidney, muscle or platelet toxicity

Laboratory Tests Safety population ^{1,2}		P	lacebo	Inclisiran		
		N	N = 804		= 811	
Liver function	ALT >3x ULN	4	(0.5%)	4	(0.5%)	
	AST >3x ULN	4	(0.5%)	2	(0.2%)	
	ALP >2x ULN	2	(0.2%)	1	(0.1%)	
	Bilirubin >2x ULN ³	8	(1.0%)	6	(0.7%)	
Kidney function	Creatinine >2 mg/dL	11	(1.4%)	5	(0.6%)	
Muscle	CK >5x ULN	9	(1.1%)	10	(1.2%)	
Hematology	Platelet count <75x10 ⁹ /L	1	(0.1%)	0	(0.0%)	

Safety population includes all patients who received at least 1 dose of study medication
 Patients may be counted in more than one category
 No cases met Hy's Law

No difference in serious adverse events

Serious TEAEs	Pla	cebo	Inclisiran		
Safety population ^{1,2}	N = 804		N = 811		
Patients with at least one serious TEAE	181	(22.5%)	181	(22.3%)	
All cause death	15	(1.9%)	14	(1.7%)	
Cardiovascular	10	(1.2%)	9	(1.1%)	
Cancer	3	(0.4%)	3	(0.4%)	
New, worsening or recurrent malignancy	20	(2.5%)	16	(2.0%)	

Safety population includes all patients who received at least 1 dose of study medication
 Patients may be counted in more than one category

ORION-11: Exploratory endpoint

Adverse cardiovascular events

Cardiovascular TEAEs	Pla	cebo	Inclisiran		
Safety population ^{1,2}	N = 804		N = 811		
Pre-specified exploratory CV endpoint ³	83	(10.3%)	63	(7.8%)	
Cardiovascular death	10	(1.2%)	9	(1.1%)	
Fatal or non-fatal MI and stroke ⁴	30	(3.7%)	12	(1.5%)	
Fatal or non-fatal MI	22	(2.7%)	10	(1.2%)	
Fatal or non-fatal stroke	8	(1.0%)	2	(0.2%)	

1. Safety population includes all patients who received at least 1 dose of study medication
2. Patients may be counted in more than one category
3. MedDRA-defined CV basket of non-adjudicated terms cardiac death, and any signs of cardiac arrest, non-fatal MI and/or stroke
4. Post-hoc analysis of hard endpoints

ORION-11: Summary

Twice-a-year inclisiran lowered LDL-C by ≥50% safely

Efficacy

- ORION-11 met all primary and secondary endpoints
- Inclisiran reduced the primary LDL-C endpoint by 54% at 17 months, 50% time averaged
- Inclisiran resulted in potent, consistent PCSK9 knock down

Safety and tolerability

- Inclisiran safety profile was similar to placebo
- No adverse changes in laboratory markers
- Injection site events 4.2% predominantly mild and none persistent

Exploratory endpoint

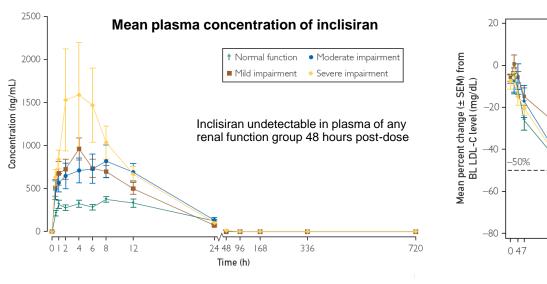
Numerically fewer CV events were reported for inclisiran than placebo

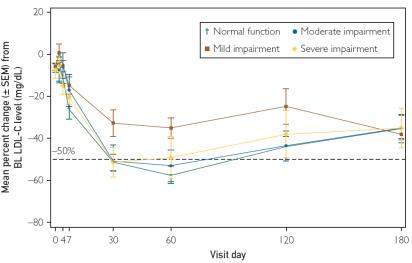
ORION-11: Conclusions and implications

Inclisiran is the first cholesterol lowering siRNA

Inclisiran achieves durable and potent LDL-C reduction with only 2x yearly injection

Excellent safety profile in a high cardiovascular risk population


Administration by HCP potentially coincides with typical six-monthly patient visits


- Lends itself to routine clinical practice
- Enables provider control over medication adherence
- May offer patients meaningful new choices
- Offering safe, convenient and assured results

ORION-17: Renal impairment study

Dose adjustments unnecessary for impaired renal function

Single 300-mg dose, open-label study in subjects with various levels of renal function (n=31)

Inclisiran safety and tolerability were unaffected by renal impairment

PCSK9i and C-Reactive Protein

Open access

Research

BMJ Open Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials

Ye-Xuan Cao, Sha Li, Hui-Hui Liu, Jian-Jun Li

	No. Arms	Patients	MD(95%CI), mg/L		I ² (%)
PCSK9-mAb types					
Evolocumab	6	797	0.00 (-0.07 to 0.07)	+	0
Alirocumab	11	2723	0.12 (-0.48 to 0.43)		0
LY3015014	5	519	-0.48 (-1.28 to 0.32)		88.6
RG7652	2	169	0.35 (-0.28 to 0.96)	-	0
Treatment duration					
>12W	14	3277	-0.11 (-0.45 to 0.23)		79
≤12W	11	931	0.00 (-0.07 to 0.07)	+	62
Participant characteristics					
FH	9	624	0.00 (-0.07 to 0.07)	+	0
Non-FH	11	3065	0.07 (-0.12 to 0.26)	+	0
Mix	5	519	-0.48(-1.28 to 0.32)	-	88.6
Treatment methods					
Monotherapy	9	2010	0.00 (-0.08 to 0.07)	+	0
Combination-therapy	16	2198	-0.04 (-0.17 to 0.10)	+	70.3
				-1.5 -1.0 -0.5 0 0.5 1 MD(95%CI)	.0

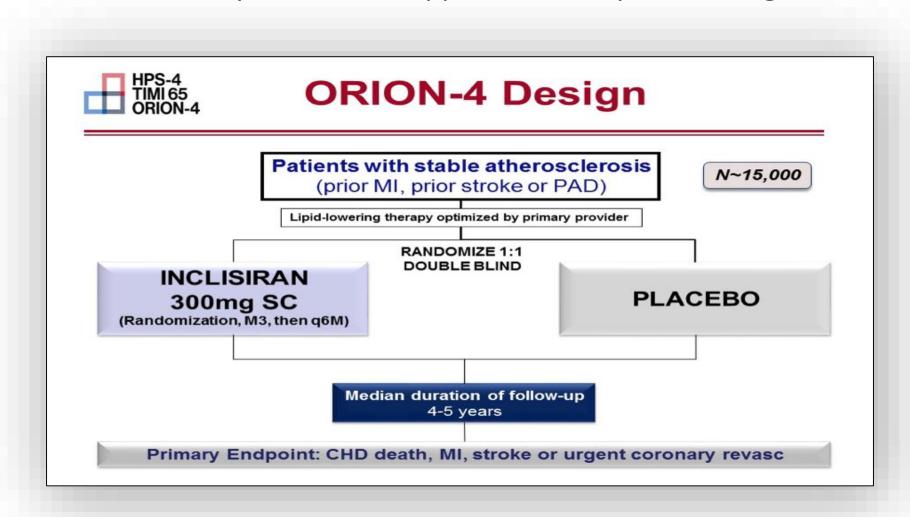
BMJ 2018;e022348

Am J Cardiovasc Drugs (2018) 18:271-282 https://doi.org/10.1007/s40256-018-0270-7

SYSTEMATIC REVIEW

Comparative Effectiveness of Inclisiran 100, 300, and 500 mg in a Population with Hyperlipidemia: A Network Meta-Analysis of Randomized Controlled Trials

Yang Wang¹ · Jinsong Wang¹ · Shenming Wang¹


The most com-

monly reported adverse events were musculoskeletal pain, nasopharyngitis, headache, and elevated C-reactive protein (CRP), none of which were significant (p > 0.05).

Am J Cardiovasc Drugs 2018;18:271

Opportunities and challenges for the future

Efficacy of different approaches to lipid lowering

Inclisiran / Leqvio®

Indications cliniques

4. INFORMATIONS CLINIQUES

4.1 Indications thérapeutiques

Lequio est indiqué chez l'adulte présentant une hypercholestérolémie primaire (hétérozygote familiale et non familiale) ou une dyslipidémie mixte, en complément d'un régime alimentaire :

- en association avec une statine seule ou une statine avec d'autres thérapies hypolipémiantes chez les patients ne pouvant atteindre les objectifs de LDL-C sous statine à dose maximale tolérée, ou
- seul ou en association avec d'autres thérapies hypolipémiantes chez les patients intolérants aux statines, ou chez qui les statines sont contre-indiquées.

4.2 Posologie et mode d'administration

<u>Posologie</u>

La dose recommandée est de 284 mg d'inclisiran administrée en une seule injection sous-cutanée : une première fois, puis à 3 mois, puis tous les 6 mois.

https://www.ema.europa.eu/en/documents/product-information/leqvio-epar-product-information_fr.pdf

Inclisiran clinical studies

ORION development program

2 premières injections suisses début mai 2021

Étude	Phase clinique	Patients (N)	Population étudiée	Durée de suivi	Critère de jugement	Référence ClinicalTrials.gov
ORION-1	П	500	ASCVD ou ASCVD RE	180 jours	Baisse du LDL-C	NCT02597127 ⁴⁰
ORION-2	II	4	НЕНО	180 jours	Baisse du LDL-C	NCT02963311
ORION-3	П	490	ASCVD of ASCVD RE	48 mois	Baisse du LDL-C	NCT03060577
ORION-4	IIIb	15 000	ASCVD or ASCVD RE	60 mois	MACE	NCT03705234
ORION-5	III	45	НЕНО	24 mois	Baisse du LDL-C	NCT03851705
ORION-6	1	24	Insuffisance hépatique	180 jours	Pharmacocinétique	NCT04765657
ORION-7	ı	31	Insuffisance rénale	60 jours	Pharmacocinétique	NCT03159416 ⁴⁰
ORION-8	III	3700	ASCVD or ASCVD RE or HFHe/HFHo	36 mois	Baisse du LDL-C	NCT03814187
ORION-9	III	482	HFHe	18 mois	Baisse du LDL-C	NCT03814187
ORION-10	III	1561	ASCVD	18 mois	Baisse du LDL-C	NCT03399370 ¹⁷
ORION-11	III	1617	ASCVD or ASCVD RE	18 mois	Baisse du LDL-C	NCT03400800 ¹⁷
ORION-12	1	48	Population saine	180 jours	QT et ECG	-
ORION-13	III	12	HFHo chez l'adolescent (de 12 à < 18 ans)	24 mois	Baisse du LDL-C	NCT04659863
ORION-14	I	40	Étude de recherche de dose	-	Baisse du LDL-C	NCT04774003
ORION-15	П	308	Étude de recherche de dose, ASCVD	270 jours	Baisse du LDL-C	NCT04666298
ORION-16	III	150	HFHe chez l'adolescent (de 12 à < 18 ans)	24 mois	Baisse du LDL-C	NCT04652726

The modern concept of lipid-lowering strategies to reduce cardiovascular diseases

ARN: du prix Nobel au traitement, la cardiologie au-devant de la scène

Pr FRANÇOIS MACH et Pr OLIVIER MULLER

Une baisse du cholestérol LDL de longue durée: enfin le silence

MAËLLE ACHARD^a, ALIKI BUHAYER^b, KEVIN DOBRETZ^a, Pr GEORG EHRET^a, Pr FRANÇOIS MACH^a

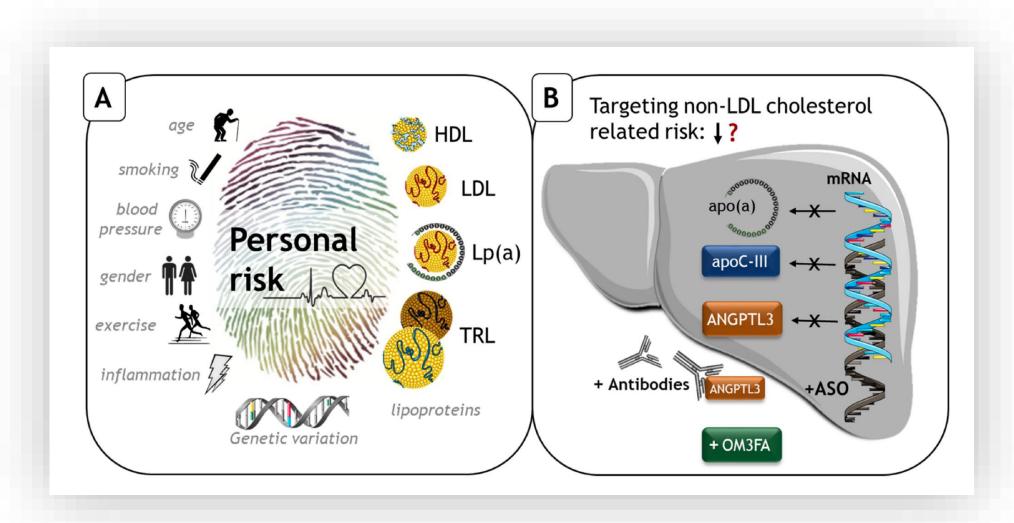
The modern concept of lipid-lowering strategies to reduce cardiovascular diseases

Concept change I: Start early

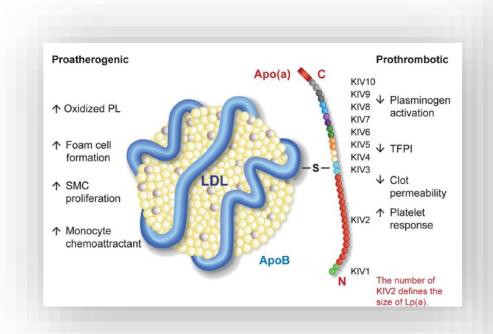
Less "lipid-exposure" leads to prevention of lesion formation

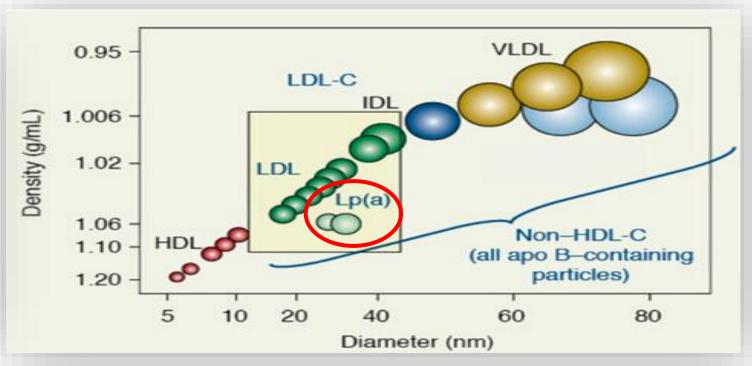
Concept change II: Treat (much more) aggressively

From desirable target to "LDL-C elimination in the blood"

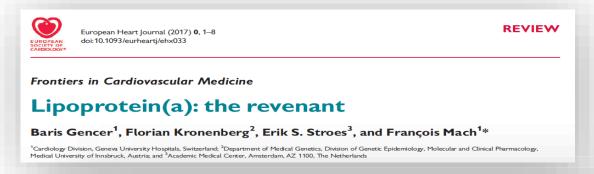

Concept change III: Use lipid-lowering combination therapy

Statin +/- ezetimibe +/- bempedoic acid (+/- PCSK9mAb) induced LDL-C lowering reduces CV risk


Concept change IV: The lower, the better & lower for longer


Statin +/- ezetimibe + siRNA induced LDL-C lowering with great efficacy, safety and full treatment's adherence

Novel lipid lowering drugs: PCSK9 and beyond


Characteristics of lipoproteins

Lipoprotein(a)

Lipoprotein(a) is a CV risk factor

Potential of Lipoprotein(a)-Lowering Strategies in Treating Coronary

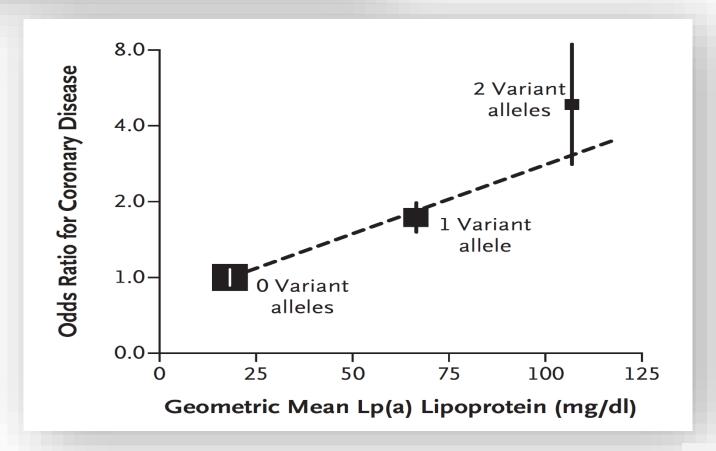
Artery Disease

Baris Gencer^{1,2} · François Mach¹

https://doi.org/10.1007/s40265-019-01243-5

Key Points

High levels of lipoprotein(a) are considered causal risk factor of cardiovascular disease (CVD).


The 2019 ESC/EAS guidelines for the management of dyslipidaemia recommend to measure Lp(a) at least once in each adult person's lifetime.

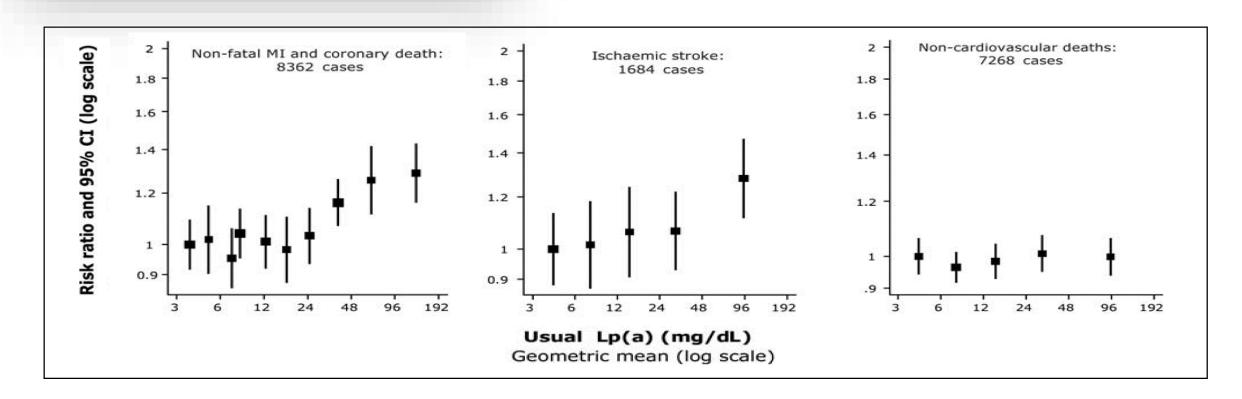
To lower Lp(a), two antisense oligonucleotides are under development, targeting apolipoprotein (B) and apolipoprotein (a).

Lipoprotein(a) and CV risk

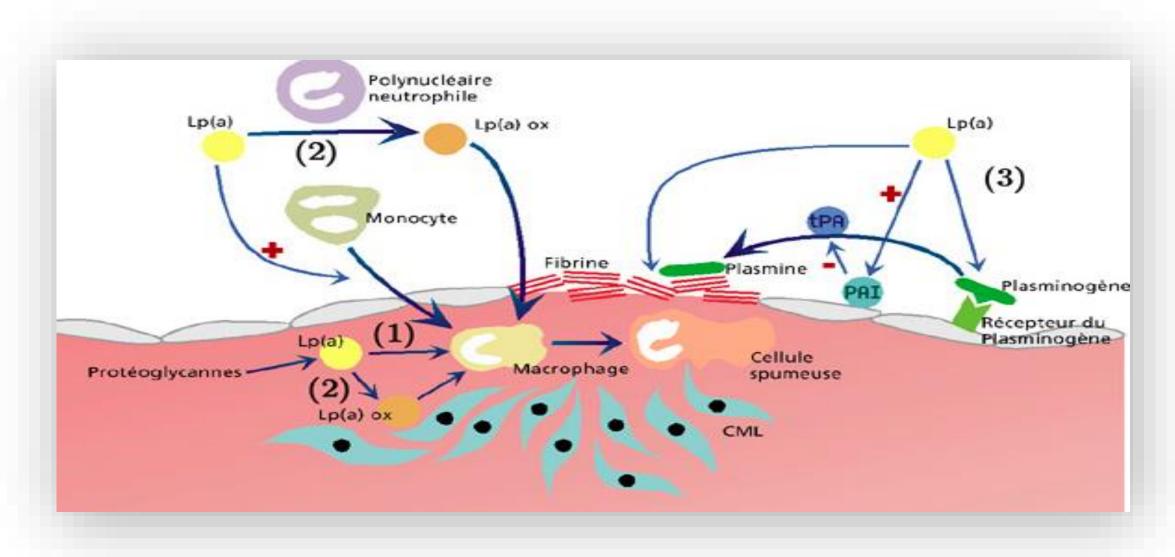
ORIGINAL ARTICLE

Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease

Lipoprotein(a) and CV risk



European Heart Journal (2010) **31**, 2844–2853 doi:10.1093/eurheartj/ehq386


CURRENT OPINION

Lipoprotein(a) as a cardiovascular risk factor: current status

Børge G. Nordestgaard ^{1*}, M. John Chapman ², Kausik Ray ³, Jan Borén ⁴, Felicita Andreotti ⁵, Gerald F. Watts ⁶, Henry Ginsberg ⁷, Pierre Amarenco ⁸, Alberico Catapano ⁹, Olivier S. Descamps ¹⁰, Edward Fisher ¹¹, Petri T. Kovanen ¹², Jan Albert Kuivenhoven ¹³, Philippe Lesnik ², Luis Masana ¹⁴, Zeljko Reiner ¹⁵, Marja-Riitta Taskinen ¹⁶, Lale Tokgözoglu ¹⁷, and Anne Tybjærg-Hansen ¹⁸, for the European Atherosclerosis Society Consensus Panel [†]

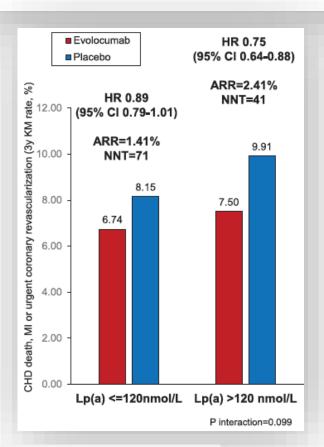
Lipoprotein(a) – The perfect killer

Recommendations for lipid analysis

Recommendations for lipid analyses for cardiovascular disease risk estimation

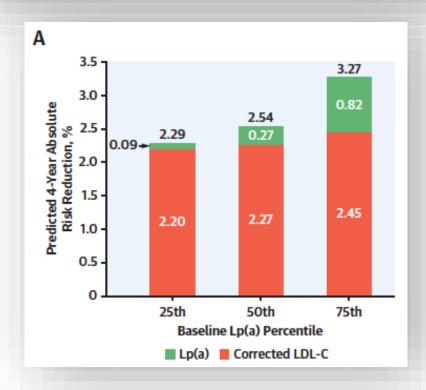
Recommendations	Class ^a	Level ^b
TC is to be used for the estimation of total CV risk by means of the SCORE system.	1	С
HDL-C analysis is recommended to further refine risk estimation using the online SCORE system.	1	С
LDL-C analysis is recommended as the primary lipid analysis method for screening, diagnosis, and management.	1	С
TG analysis is recommended as part of the routine lipid analysis process.	1	С
Non-HDL-C evaluation is recommended for risk assessment, particularly in people with high TG levels, DM, obesity, or very low LDL-C levels.	1	С
ApoB analysis is recommended for risk assessment, particularly in people with high TG levels, DM, obesity, metabolic syndrome, or very low LDL-C levels. It can be used as an alternative to LDL-C, if available, as the primary measurement for screening, diagnosis, and management, and may be preferred over non-HDL-C in people with high TG levels, DM, obesity, or very low LDL-C levels.	1	С

Lp(a) measurement should be considered at least once in each adult person's lifetime to identify those with very high		
inherited Lp(a) levels >180 mg/dL (>430 nmol/L) who may have a lifetime risk of ASCVD equivalent to the risk associated	lla	С
with heterozygous familial hypercholesterolaemia.		
Lp(a) should be considered in selected patients with a family history of premature CVD, and for reclassification in people	lla	C
who are borderline between moderate and high-risk.	11a	


PCSK9 mAb - Lp(a) and CV outcomes?

Circulation

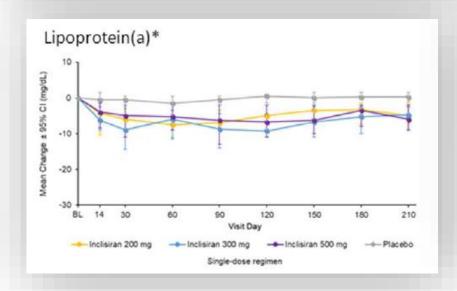
ORIGINAL RESEARCH ARTICLE


Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk

Insights From the FOURIER Trial

ORIGINAL INVESTIGATIONS

Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome


Inclisiran and Lp(a)

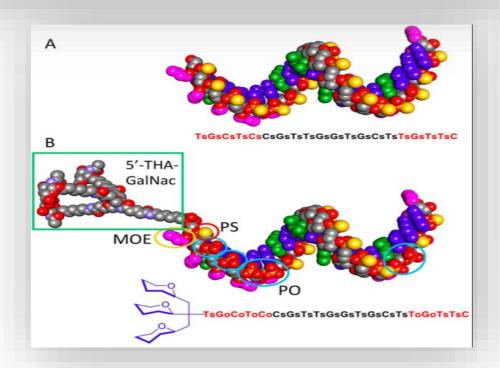
Circulation

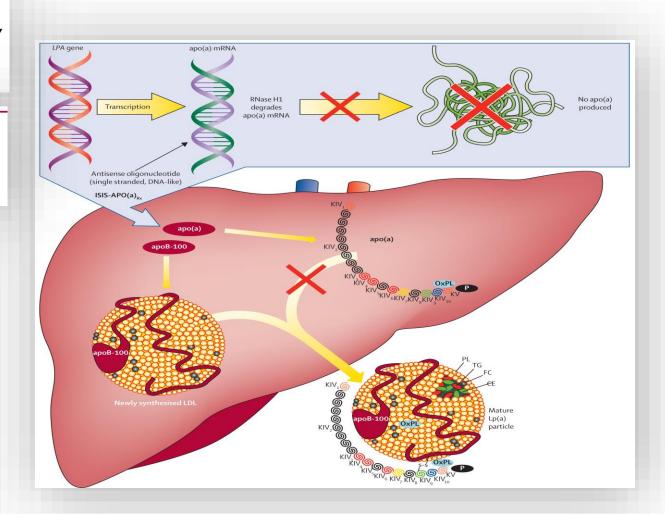
ORIGINAL RESEARCH ARTICLE

Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins

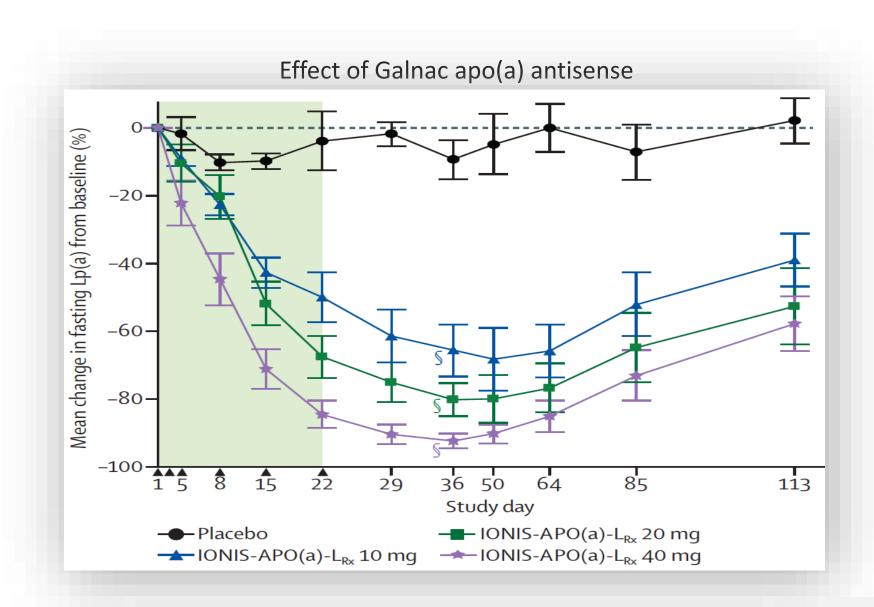
Prespecified Secondary End Points in ORION 1

		Single-Do	se Groups			Double-Do	se Groups	
	Placebo (n=64)	200 mg Inclisiran (n=60)	300 mg Inclisiran (n=60)	500 mg Inclisiran (n=60)	Placebo (n=61)	100 mg Inclisiran (n=59)	200 mg Inclisiran (n=60)	300 mg Inclisiran (n=59)
LDL-C								
Baseline	127.2 (52.31)	122.5 (34.73)	119.5 (41.56)	138.1 (46.05)	124.9 (44.20)	127.9 (47.85)	137.1 (70.98) 131.8 (58.51)
Day 180	127.8 (48.77)	87.7 (38.98)	75.2 (44.65)	82.4 (36.57)	124.1 (39.57)	82.9 (40.36)	82.0 (70.: 3)	67.6 (55.81)
Lp(a)								
Baseline	25.3 (8.5–122.0)	43.0 (11.0–127.0)	36.8 (18.8–147.0)	33.3 (10.8–151.5)	44.5 (12.0–146.0)	32.0 (11.5–134.0)	41.0 (9.8–140.3	47.0 (11.0–160.5)
Day 180	22.0 (9.0–138.0)	29.5 (9.0–22.5)	31.5 (14.0–125.0)	19.5 (8.0–145.0)	52.0 (9.0–148.0)	29.0 (7.0–103.0)	32.0 (6.0–132.5)	36.0 (8.0–130.0)

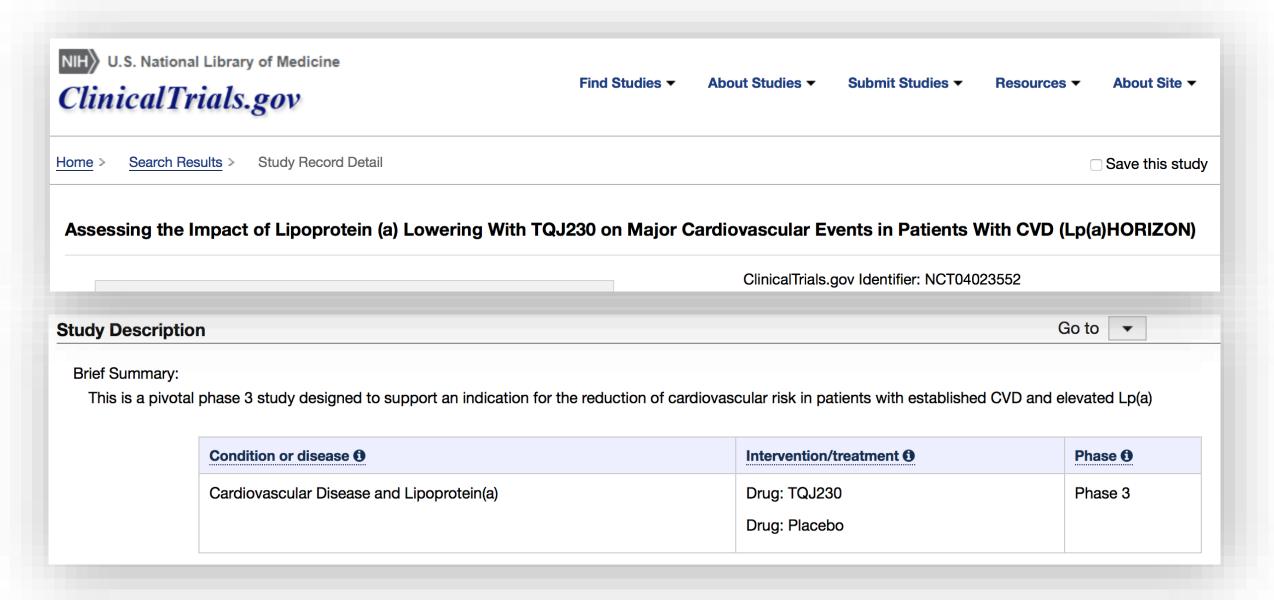

Lowering Lipoprotein(a) with apo(a)-antisense


Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study

Sotirios Tsimikas, Nicholas J Viney, Steven G Hughes, Walter Singleton, Mark J Graham, Brenda F Baker, Jennifer L Burkey, Qingqing Yang, Santica M Marcovina, Richard S Geary, Rosanne M Crooke, Joseph L Witztum


Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials

Nicholas J Viney, Julian C van Capelleveen, Richard S Geary, Shuting Xia, Joseph A Tami, Rosie Z Yu, Santica M Marcovina, Steven G Hughes, Mark J Graham, Rosanne M Crooke, Stanley T Crooke, Joseph L Witztum, Erik S Stroes, Sotirios Tsimikas



Lowering Lipoprotein(a) with apo(a)-antisense

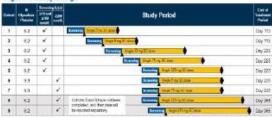
Lowering Lp(a) with apo(a)-antisense – RCT

Safety, Tolerability, and Efficacy of Single-dose AMG 890, a Novel siRNA Targeting Lp(a), in Healthy Subjects and Subjects With Elevated Lp(a)

Michael J Koren, Patrick Maurice Moriarty, Joel Neutel, 3 Seth J Baum, 4" Martha Hernandez-Illas, 5 Howard S Weintraub, 6 Jennifer Hellawell,7 Tracy Varrieur, 9 Winnie Sohn,9 Huei Wang,10 Mary Elliott-Davey,11 Helina Kassahun,9 Gerald F Watts121

*Jacksonville Center for Clinical Research, Jacksonville, FL: *University of Kansas Medical Center, Kansas City, KS: *Orange County Research Center, Tustin, CA; *Preventive Cardiology Inc. Boca Raton, FL; *QPS MRA, Miami, FL; 6NYU Langone Medical Center, New York, NY; 7Amgen, South San Francisco, CA, *Amgen, Cambridge, MA; *Amgen, Thousand Oaks, CA; ¹⁰Amgen, Newbury Park, CA; ¹¹Amgen Ltd, Cambridge; ¹²University of Western Australia, Perth, Australia

"Conset attention Excellence Chicar Trian. Bookhole. Ft. 184.
"Conset attention Excellent Chicarchi University of President Assaults, Department of Carbodge, Royal Pertit Hospital Perts. Assaults


Background & Objective

- · Lipoprotein(a) [Lp(a)] is a risk factor for myocardial infarction and other atherosclerotic events1
- No approved medicines selectively target Lp(a) and have demonstrated reduction in cardiovascular events
- Olpasiran (AMG 890) is a small interfering ribonucleic acid (siRNA) designed to reduce the production of Lp(a) by targeting messenger RNA transcribed
- In this study (NCT 03626662), we evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics of olpasiran

Methods

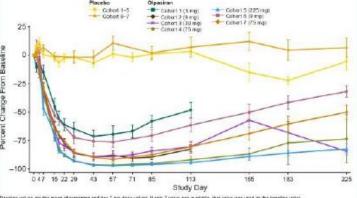
- Adults with plasma concentrations at screening of Lp(a) ≥70 to ≤199 nmol/L (cohorts 1-5) or ≥200 nmol/L (cohorts 6-7), were randomized 3:1 to receive a single subcutaneous dose of olpasiran or placebo (Figure 1)
- The primary endpoints were treatment-emergent adverse events, safety laboratory analytes, vital signs, and EGGs. Secondary endpoints included PK parameters and percent change from baseline in Lp(a)

Figure 1. Study Design

Supplierg was Day -28 to Day -1, 🛦 - Dusing (Day 1) 🔹 - End of treatment solved. Subjects were to return for follow-up until Lipid was at least blanking at each does level after all subjects had been followed by 15 days. For cohorts 1 5 and 0, the first 2 subjects who received objects and placete. The sertima pensy event to be assessed by with no at least 24 hours before competing the cohort my conests on a select objects. ware to be on mable doses of states for at least 6 weeks

Disclosures & Acknowledgements

- MAR: Report have Associated Genter for Dissout Research. HW, NS-D. HK, JH, TV, WS. Employees and stockholders of Angen Inc. GPW Honories from Ampen, According Contactioners, Sancti-Repension, Session profession Amper, Amperia, Sancti-Repension Navata PNR Honorais for Expens, Sand, Asstero CME, Inmetic Defrants, Expens, Record, Recola, Anthy Soleto, Reconf. Cransforringer, Sand, Fri Frandition Rosey Kosa, Expens, Scriptic Novets, Mosa, Regment, Agmont Scissos Spenies Sanes tir Anaris, Anger, N.A. JN, 8H1 nating to disclose &/ Bases Support from Sanet, Anger, Regermon, Acoa, Novarte, Oudepoill Gotal Comon Lineage Crosp AdvaZereca Nessen/Nossen/Lineage for Nove Nortes. Boelenger Incertaint, in 4507: Hunoscia from Anger, Amare, Regeneror, Rasearch Braits from Anger, Alices
- This study was funded by Angen. Elec Stotzfax, PSD. Wingers Inc.) provided medical writing assistance
- Operator is an unlaboled unapproved product


During the treatment period, one dose of olpasiran:

- Was well tolerated
- Significantly reduced Lp(a) with observed approximate median percent reductions of >90% at doses ≥9 mg
- Led to reductions in Lp(a) persisting 3 to 6 months at doses ≥9 mg

Table 1. Treatment-emergent Adverse Events

		rts 1–5 '0 and ≤199 nmol/L	Cohorts 6 & 7 Semening Lp(s) ≥200 nmol/L		
Adverse events, n (%)	Placebo (N=10)	Olpasiran (N=30)	Placebo (N=5)	Olpasiran (N=18)	
AnyAE	5 (50.0)	12 (40.0)	4 (86.7)	10 (55.6)	
Serious AE	0	0	1 (16.7)	0	
AEs occurring in more than one subject acr	oss cohorts	- 8 2	1,200	and a	
Headachs	1 (10.0)	Ü	3 (56:0)	5 (27.8)	
Upper respiratory tract infection	1 (10.0)	4 (13.3)	1 (16.7)	3 (16.7)	
Back pain	1 (10.0)	1 (3.3)	0	3 (16.7)	
Non-cardiac chest pale	1 (10.0)	1 (3.3)	1 (16.7)	0	
Viral upper respiratory tract infection	0	1 (3.3)	0	2(11.1)	
Blood creatine phosphokinase increased	1 (10.0)	1 (3.3)	0	0	
Contusion	Ď	1 (3.3)	Ď	1 (5.6)	
Skin abrasion	0	1 (3.3)	0	1 (5.6)	
Fatigue	0	0	1 (16.7)	1 (5.6)	
Arthralgia	0	1 (3.3)	0	1 (5.6)	
Epistaxis	1 (10.0)	0	1 (16.7)	0	
AEs of special interest					
Injection site reaction	0	1 (3.3)	0	.0	

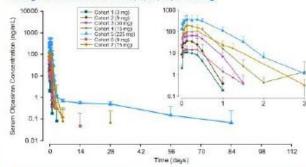
Figure 2. Lp(a) Percent Change from Baseline After a Single Dose of Placebo or Olpasiran

Baseline values are the mean of excepting and day 1 breidese values. If only 1 value was available, that value was used as the traceline value. As is data anabshot data: \$10ct2020

Imerican Heart Association, November 13-17, 2829

© 2020 Aragon Inc.

Results


Table 2. Baseline Characteristics

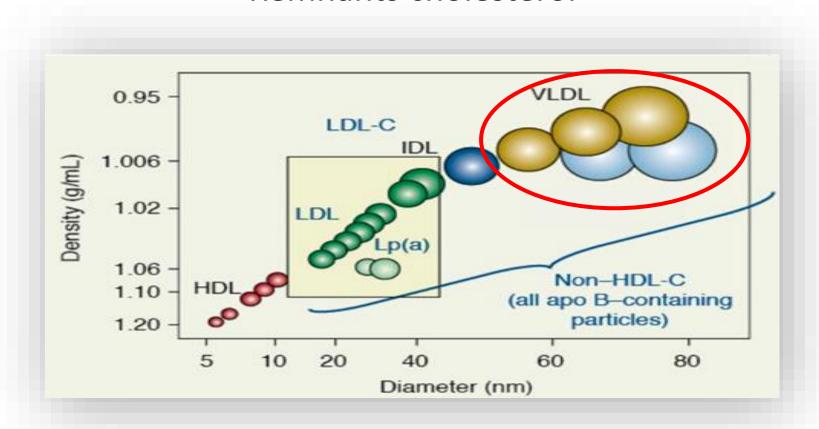
		Cohorts 1–5 Screening Lp(a) ≥70 to ≤199 nmol/L		Cohorts 6 & 7 Screening Lp(a) ≥200 nmoi/L	
Baseline Characteristic		Placebo (N=10)	Olpasiran (N=30)	Placebo (N=5)	Olpasiran (N=18)
Age (years), mean (SD)		46.3 (8.5)	43.9 (13.5)	57.8 (5.8)	52 T (9.4)
Women, n (%)		3 (30.0)	9 (30.0)	4 (55.7)	6 (33.3)
Ethnicity, n (%)	Hispanio/Latino	5 (50.0)	19 (03.3)	2 (33.3)	5 (27.8)
	Not Hispanic/Latino	5 (50.0)	11 (36.7)	4 (95.7)	13 (72.2)
Race, n (%)	Black	3 (30.0)	8 (30.0)	0	1 (5.8)
	White	7 (70.0)	21 (70.0)	5 (83.3)	18 (88.9)
	Other	0	0	1 (16.7)	1 (5.6)
BMI, kg/m², mean (SD)		27.6 (3.5)	27.0 (3.5)	28.1 (2.1)	27:7 (3.3)
Lp(a) nmol/L, median (Q1, Q3)		124 (104, 137)	122 (97, 146)	272 (233, 307)	253 (224, 33

Pharmacokinetic Results

- Olpasiran was rapidly absorbed with mean C_{ress} occurring within 7.5 hours after dosing. Mean half-life (t₁₀) ranged from 3 to 8 hours with the vast majority eliminated from serum within 2 to 3 days
- Olpasiran AUC exposures in subjects with Lp(a) ≥200 nmol/L (Cohorts 6 and 7) were 18–33% lower than in subjects with Lp(a) ≥70 to ≤199 nmol/L (Cohorts 2 and 4)

Figure 3. Mean (SD) Serum Olpasiran Concentration-Time Profiles Following A Single SC Administration of 3, 9, 30, 75, or 225 mg

Conclusions


- No safety concerns were identified for olpasiran in this single dose study
- No clinically relevant changes in liver tests, platelets or coagulation parameters, or renal function were observed
- Systemic exposures of olpasiran increased approximately dose-proportionally
- in adults with elevated Lp(a) (median Lp(a) = 122 nmoVL (cohorts 1 to 5) and 253 nmoVL [cohorts 6 and 7], a single dose of olpasiran significantly reduced Lp(a) with observed approximate median percent reductions of >90% at doses of ≥9 mg in a dose-dependent
- Lp(a) reductions persisted for 3 to 6 months at doses of ≥9 mg
- Per the protocol, follow-up is ongoing until patients return to 80% of baseline Lp(a): These results validate the approach of using hepatocyte-targeted siRNA to lower Lp(a) in people with elevated Lp(a)
- Olpasiran recently received a Fast Track Designation from the US Food and Drug Administration. A Phase 2 study to evaluate efficacy, safety, and tolerability of olpasiran in subjects with elevated Lp(a) is currently underway

References

- Nordestpord B.C., et al. Fur Heart J. 2010;31:2844-2953.
 Wilson DP, et al. J. Chr. Epidol. 2010;13(3):374-382.

Characteristics of lipoproteins

Remnants cholesterol

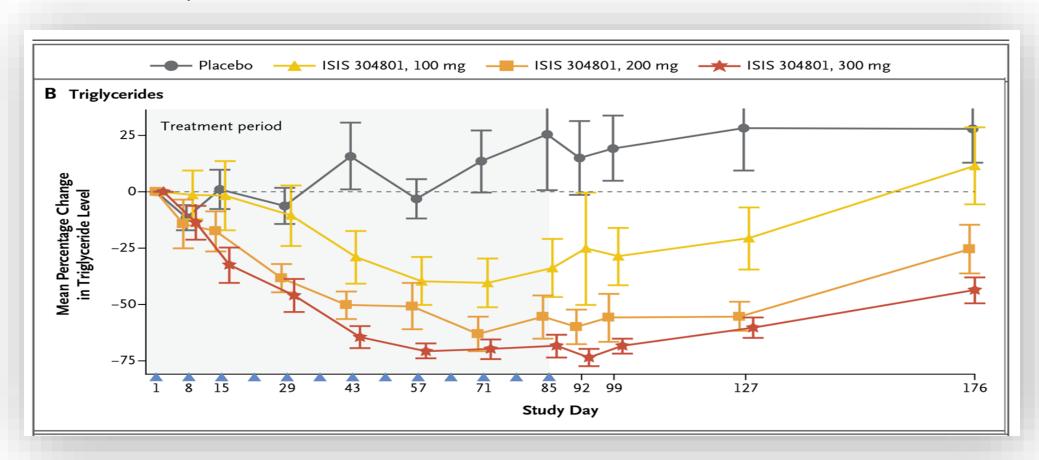
Lowering Remnant cholesterol with Apo-CIII-antisense

'Remnant' cholesterol is next on the list Apo-CIII antisense reduces TG and remnant cholesterol

ORIGINAL ARTICLE

Cardiovascular and Metabolic Effects of *ANGPTL3* Antisense Oligonucleotides

Mark J. Graham, M.S., Richard G. Lee, Ph.D., Teresa A. Brandt, Ph.D., Li-Jung Tai, M.D., Ph.D., Wuxia Fu, M.S., Raechel Peralta, M.S., Rosie Yu, Ph.D., Eunju Hurh, Ph.D., Erika Paz, Bradley W. McEvoy, D.P.H., Brenda F. Baker, Ph.D., Nguyen C. Pham, B.S., Andres Digenio, M.D., Steven G. Hughes, M.B., B.S., Richard S. Geary, Ph.D., Joseph L. Witztum, M.D., Rosanne M. Crooke, Ph.D., and Sotirios Tsimikas, M.D.


Table 2. Absolute Levels of ANGPTL3, Lipids, and Lipoproteins at Day 43 after Initiation of ANGPTL3-L_{Rx} Treatment in the Multiple-Dose Groups.*

Measure	Placebo (N = 8)	ANGPTL3-L _{Rx}				
		10 mg (N=6)	20 mg (N = 5)	40 mg (N = 6)	60 mg (N=6)	
ANGPTL3 — ng/ml	132.5±38.9	45.3±22.9†	24.5±7.5†	21.1±5.0†	16.6±8.1†	
Triglycerides — mg/dl	183±76	135±55	73±20†	93±24‡	82±27†	
LDL cholesterol — mg/dl	151±18	126±29	124±24	115±31‡	85±26†	
VLDL cholesterol — mg/dl	37±15	27±11	15±4†	19±5‡	16±6†	
Apolipoprotein B — mg/dl	122±19	102±22	99±13‡	90±19‡	78±22†	
Non-HDL cholesterol — mg/dl	188±25	153±28‡	139±26‡	133±32‡	101±31†	
Total cholesterol — mg/dl	230±20	197±27‡	171±30†	168±33†	134±29†	
HDL cholesterol — mg/dl	42±12	44±16	32±5	35±4	33±10	
Apolipoprotein AI — mg/dl	146±15	143±36	115±15†	112±13†	105±23†	
Apolipoprotein C-III — mg/dl	12.8±3.2	9.1±3.8	4.2±2.3†	5.7±3.1†	3.8±1.0†	
Lipoprotein(a) — nmol/liter	32±21	71±69	13±12	18±24	5±8†	

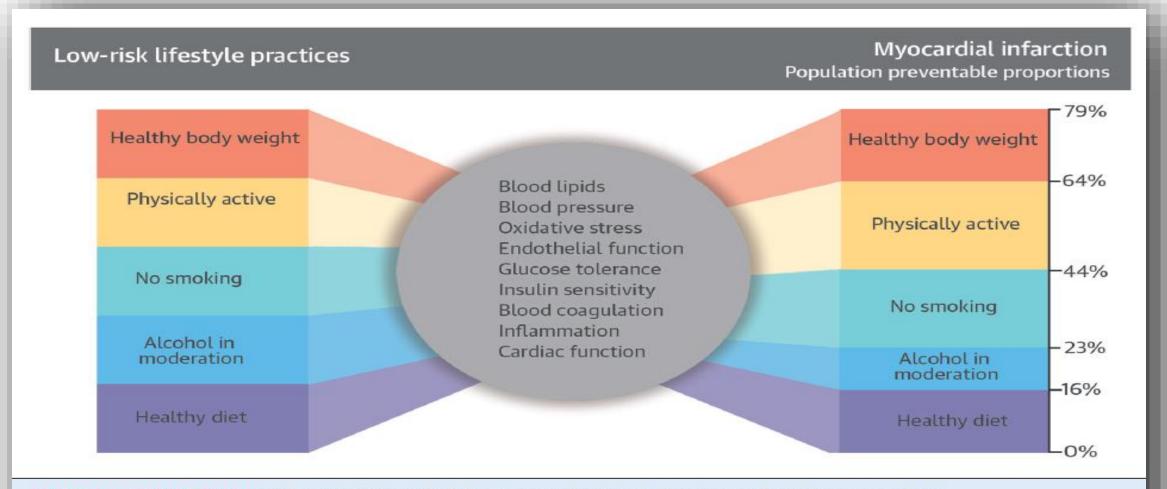
Lowering Remnant cholesterol with Apo-CIII-antisense

'Remnant' cholesterol is next on the list

Apo-CIII antisense reduces TG and remnant cholesterol

Consultation "Lipides" aux HUG

• Consultation conjointe des **Services de Cardiologie** et **d'Endocrinologie** Prof. François Jornayvaz, Prof. Georg Ehret, Prof. François Mach


• Infirmière coordinatrice: Mme Elise Guillermet

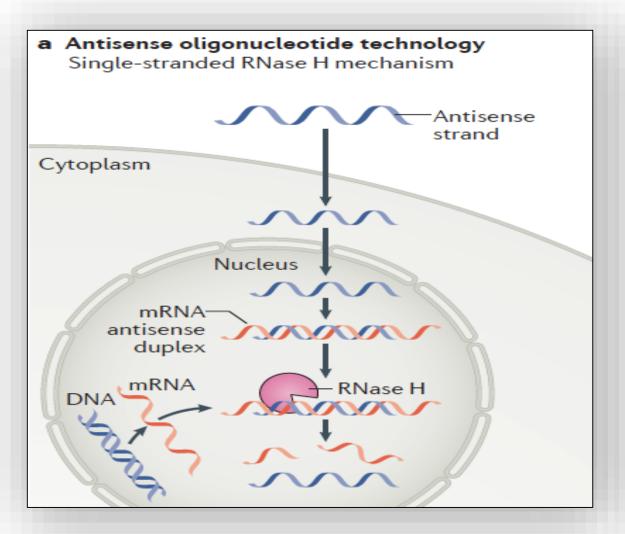
Tél: 079-553 55 08 Fax: 022-372 50 18 elise.guillermet@hcuge.ch

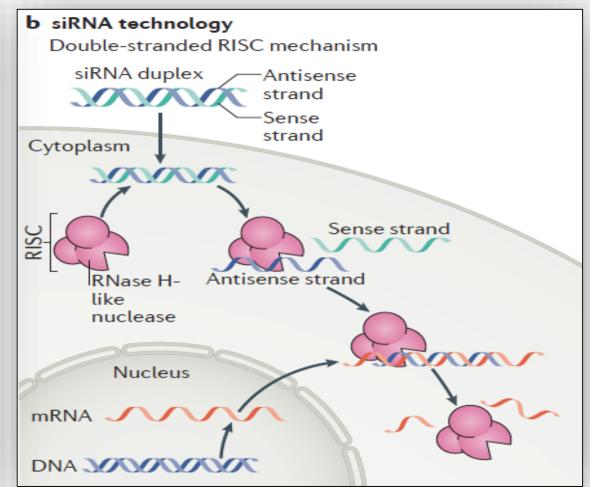
CV Risk factors & lifestyle

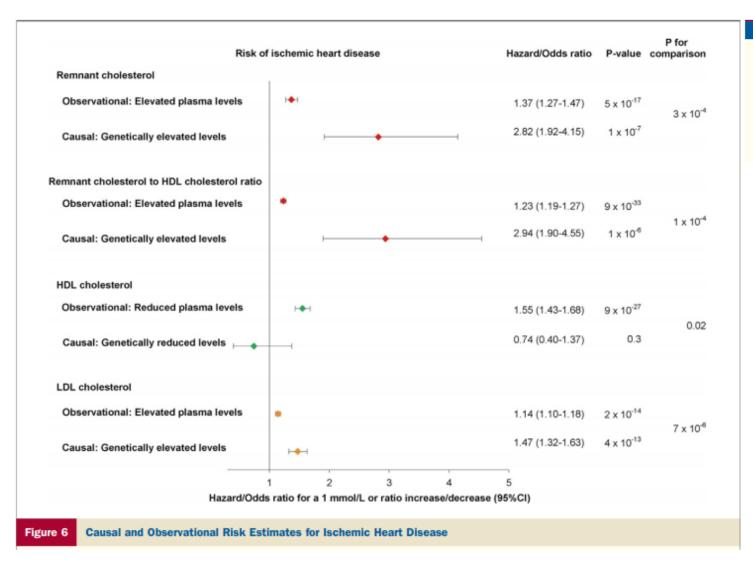
CENTRAL ILLUSTRATION 5 Combined Low-Risk Behaviors and the Population Preventable Proportions of MI

The combination of the 5 low-risk dietary and lifestyle factors, the proposed intermediate biological factors, and the population preventable proportions of myocardial infarction.

Service de cardiologie / HUG Colloque multidisciplinaire de formation continue, cardiologie et chirurgie cardio-vasculaire Genève, le 27 mai 2021


Merci pour votre attention




Genetic-therapy to reduce blood-lipid-levels

Antisense oligonucleotide-based versus siRNA-based approaches

Remnant cholesterol causally related to CVD-risk: *Mendelian Randomization*

Remnant Cholesterol as a Causal Risk Factor for Ischemic Heart Disease

Anette Varbo, MD,*†‡ Marianne Benn, MD, PHD, DMSc,*†‡
Anne Tybjærg-Hansen, MD, DMSc,†‡\$|| Anders B. Jørgensen, MD,†‡\$
Ruth Frikke-Schmidt, MD, PHD, DMSc,†‡\$ Børge G. Nordestgaard, MD, DMSc*†‡\$

Cardiometabolic Risk