Service de cardiologie / HUG

Colloque multidisciplinaire de formation continue, cardiologie et chirurgie cardio-vasculaire

Genève, le 27 mai 2021

## LDL-cholestérol: l'âge du silence









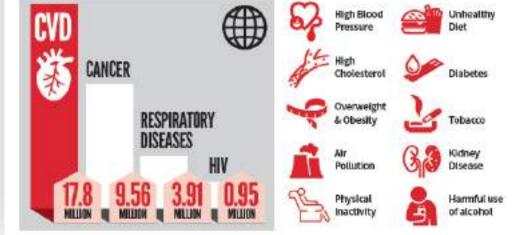
### Aucun conflit d'intérêt

Tous mes honoraires pour conférences ou conseils scientifiques sont versés à la Fondation GEcor ou au Département de Médecine des HUG.

Le service de cardiologie a reçu des financements de firmes pharmaceutiques pour la recherche clinique, toujours via des contrats signés par le Département de Médecine des HUG.






## **Maladies cardiovasculaires**

## **CARDIOVASCULAR DISEASE** The world's number 1 killer

Cardiovascular diseases are a group of disorders of the heart and blood vessels, commonly referred to as **heart disease** and **stroke**.



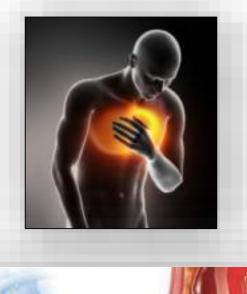


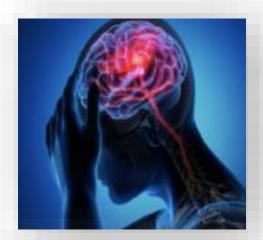


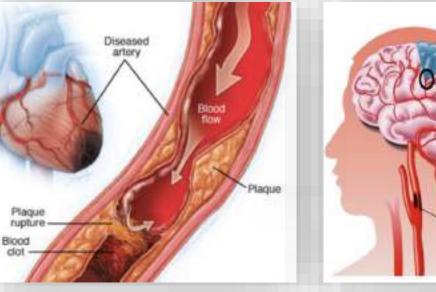
### Athérosclérose

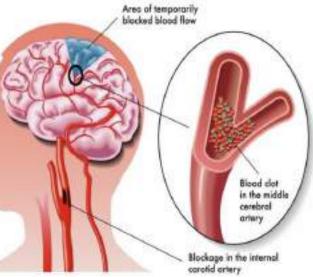
### **Coronary Artery Disease**

Leading cause of mortality

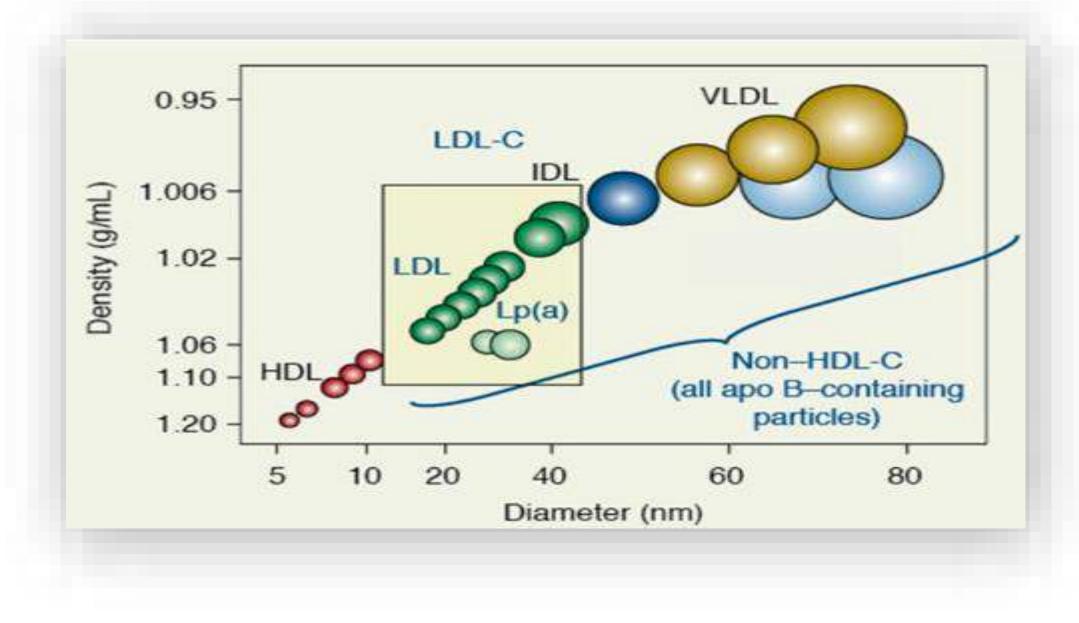

Happened globally


Increase new cases

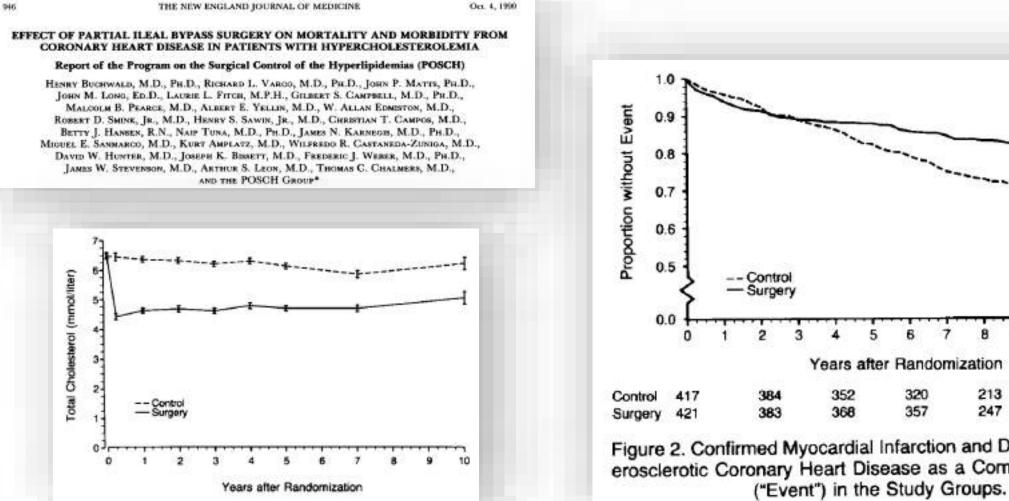

Leading cause of loss of productivity


## **TRUE PANDEMIC**

WHO (2009): "CHD is now the leading cause of death worldwide; it is on the rise and has become a true pandemic that respects no borders"



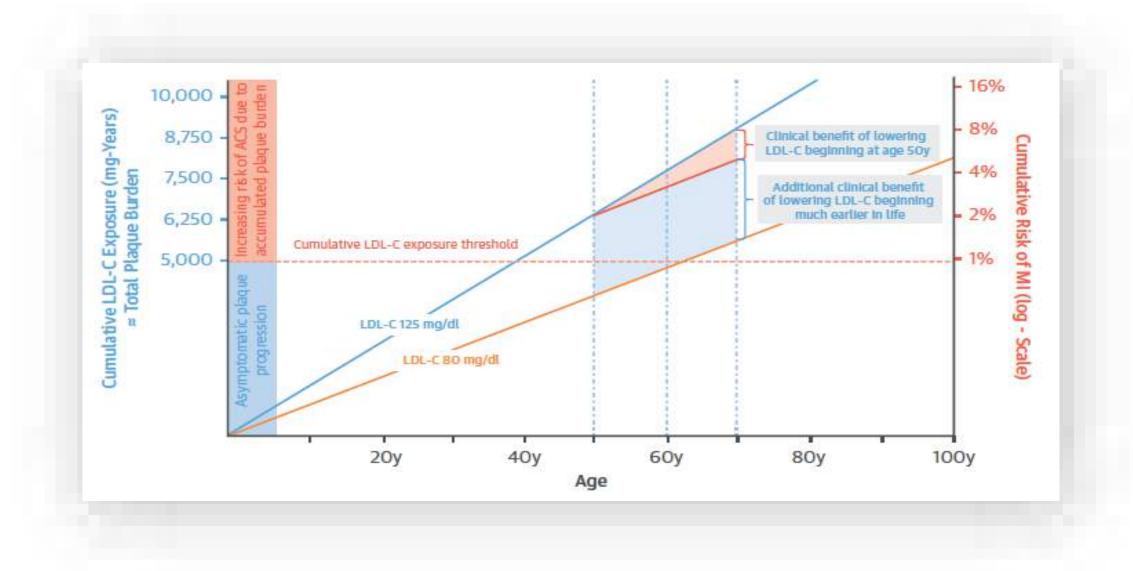




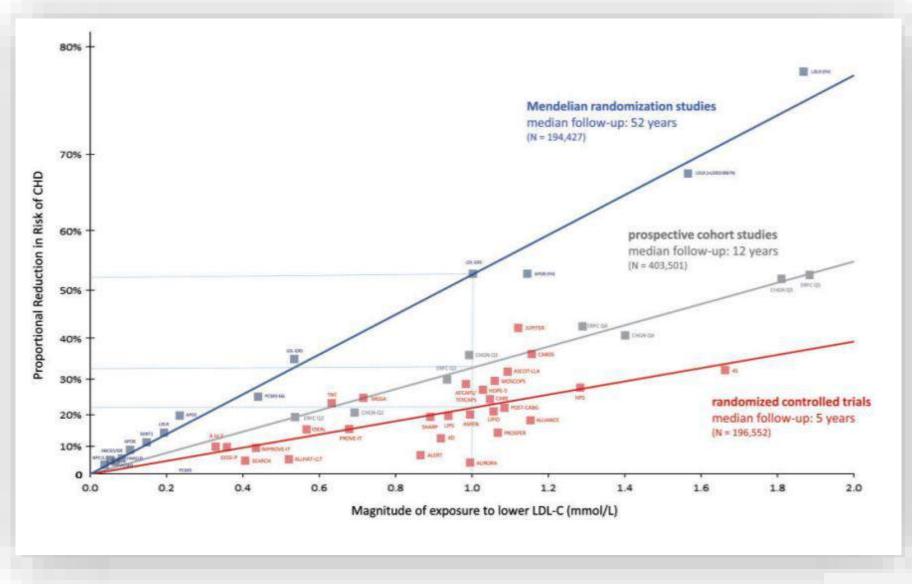

### **Caracteristiques des lipoprotéines**




### **Lowering cholesterol lowers CV events: first evidence**

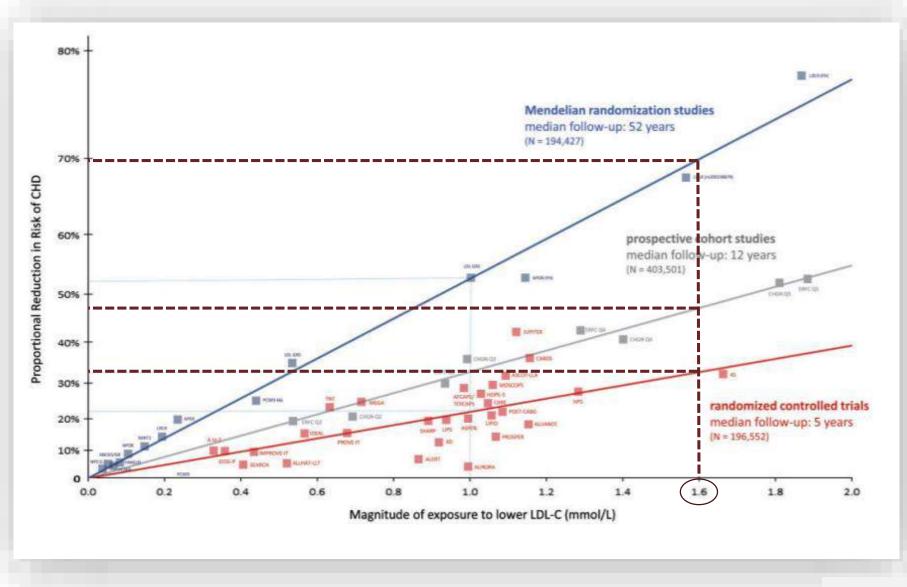


Years after Randomization Figure 2. Confirmed Myocardial Infarction and Death Due to Atherosclerotic Coronary Heart Disease as a Combined End Point


N Engl J Med 1990;323:946

## **Time-Exposure to LDL-C**




*JACC* <u>2018</u>;72:2890

### **Time-Exposure to low LDL-C**



*Eur Heart J* <u>2017</u>;38:2459

### **Time-Exposure to low LDL-C**



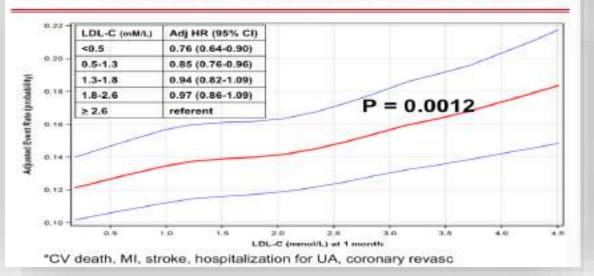
*Eur Heart J* <u>2017</u>;38:2459

# Evidence for efficacy of LDL-lowering therapies down to below 1.4 mmol/L (55 mg/dL)



| Source of evidence                                                                                 | Mean reduction in LDL<br>cholesterol;<br>mmol/L [mg/dL] | Outcome                                      | RR (95% CI)                      |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|----------------------------------|
| CTT meta-analysis <sup>1</sup> (high-intensity vs standard statin;<br>subgroup <2.0 mmol/L)        | 1.71 [66] vs 1.32 [50]                                  | MI, CHD death, stroke,<br>coronary revasc.   | 0.71 (0.56-0.91)<br>[per mmol/L] |
| IMPROVE-IT <sup>2</sup> (eze plus statin vs statin)                                                | 1.80 [70] vs 1.40 [54]                                  | CV death, MI, stroke,<br>UA, coronary revasc | 0.94 (0.89-0.99)                 |
| FOURIER <sup>3</sup> (evolocumab plus high-dose statin ± eze vs<br>high-dose statin ± eze)         | 2.37 [92] vs 0.78 [30]                                  | CV death, MI, stroke,<br>UA, coronary revasc | 0.85 (0.79-0.92)                 |
| ODYSSEYOUTCOMES <sup>4</sup> (alirocumab plus high-dose statin<br>± eze vs high-dose statin ± eze) | 2.37 [92] vs 1.37 [53]                                  | MI, CHD death, stroke,<br>UA                 | 0.85 (0.78-0.93)                 |

<sup>1</sup>Lancet <u>2010</u>;376:1670; <sup>2</sup>NEJM <u>2015</u>;372:2387; <sup>3</sup>NEJM <u>2017</u>;376:1713; <sup>4</sup>NEJM <u>2018</u>;379:2097


2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk (European Heart Journal 2019 -doi: 10.1093/eurheartj/ehz455)

## **PCSK9 mAb: Efficacy and safety**

### Clinical efficacy and safety of achieving very low LDL-CLDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab (FOURIER trial

Robert P Glugliana, Terje R Pedersen, Jeong-Gun Park, Gaetano M De Ferrari, Zbigniew A Gaolong, Richard Ceska, Kalman Toth, Ioanna Gouni-Berthold, Jose Lopez-Miranda, François Schiele, François Mach, Brian Ott, Estella Kanevsky, Armando Lira Pineda, Ransi Somaratne, Scott M Wasserman, Anthony C Keech, Peter S Sever, Marc S Sobatine; on behalf of the FOURDER Investigators.

### Primary Efficacy Endpoint\*



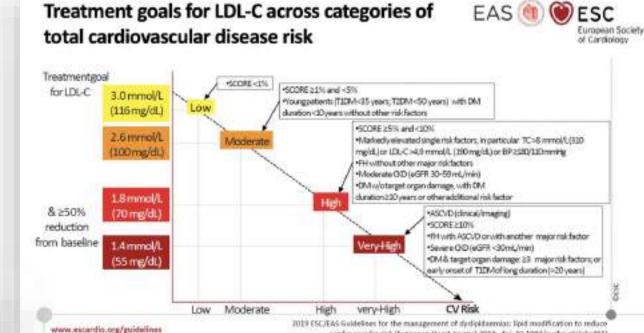
### Exploratory Analysis – 1 Achieved LDL-C <0.4 mM/L\*

|                                    | LDL-C at      | 4 Weeks       |                         |       |
|------------------------------------|---------------|---------------|-------------------------|-------|
|                                    | <0.4 (N=1335) | ≥2.6 (N=4395) |                         | 1     |
|                                    | n (%)         | n (%)         | Adjusted HR<br>(95% Cl) | Р     |
| Efficacy Endpoints                 | 2002          | 10 Mar 14     | 10000                   |       |
| CVD, MI, stroke, UA,<br>cor revasc | 105 (7.9)     | 521 (11-9)    | 0-71 (0-56-0-89)        | 0-003 |
| CV death, MI, stroke               | 66 (4-9)      | 345 (7-8)     | 0.66 (0.50-0.88)        | 0.005 |
| Safety Endpoints                   |               |               |                         |       |
| Serious AE                         | 313 (23·4)    | 1022 (23-3)   | 0-96<br>(0-81-1-13)     | 0.63  |
| AE -> drug DC                      | 42 (3 1)      | 149 (3-4)     | 0·89<br>(0·60-1·32)     | 0.56  |

Lancet 2017;390:1962

## **ESC/EAS 2019 Lipid Guidelines**

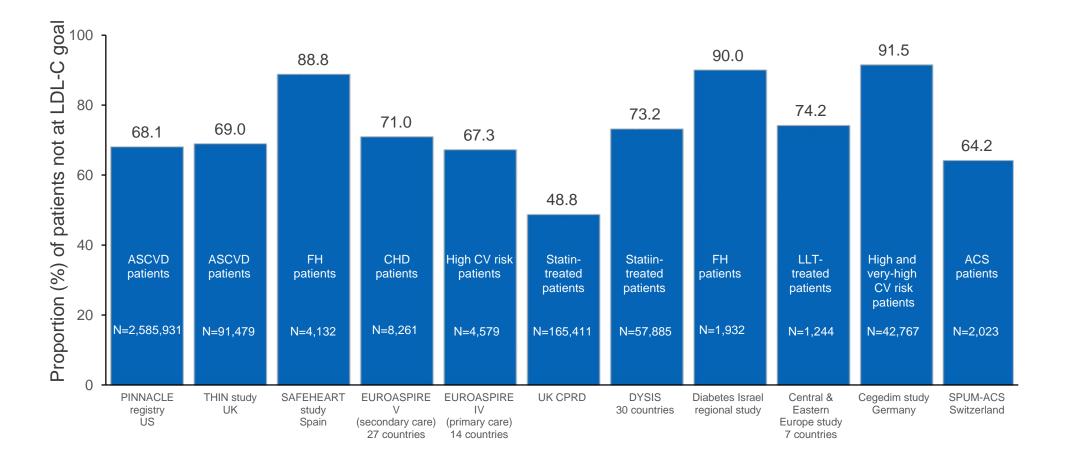



**ESC/EAS GUIDELINES** 

#### 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk

The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS)

Authors/Task Force Members: François Mach\* (Chairperson) (Switzerland). Colin Baigent\* (Chairperson) (United Kingdom), Alberico L. Catapano1\* (Chairperson) (Italy), Konstantinos C. Koskinas (Switzerland), Manuela Casula<sup>1</sup> (Italy), Lins Badimon (Spain), M. John Chapman<sup>1</sup> (France), Guy G. De Backer (Belgium), Victoria Delgado (Netherlands), Brian A. Ference (United Kingdom), Ian M. Graham (Ireland), Alison Halliday (United Kingdom), Ulf Landmesser (Germany), Borislava Mihaylova (United Kingdom), Terje R. Pedersen (Norway), Gabriele Riccardi<sup>4</sup> (Italy), Dimitrios I, Richter (Greece), Marc S, Sabatine (United States of America), Marja-Riitta Taskinen<sup>1</sup> (Finland), Lale Tokgozoglu<sup>1</sup> (Turkey), Olov Wildund<sup>1</sup> (Sweden)






cardiovascular risk (European Heart Sournal 2019 -doi: 10.1093/eurbeart)/ebo455)

Eur Heart J 2020;41:111

## **Despite efficacious LDL-C lowering therapies:** High and very high-risk patients are failing to achieve LDL-C goals



Circulation. 2019;140 (S1):A12904; BMJ Open. 2017;7:e013255; JACC. 2016;67:1278; Atherosclerosis. 2019;285:135; Eur J Prev Cardiol. 2016;23:2007; Heart. Atherosclerosis. 2016;255:200; Eur J Prev Cardiol. 2017;24:867; Adv Ther. 2019;36:608; Atherosclerosis. 2018;268:99; J Am Heart Assoc. 2017;6:e0 537.

(0)1)

## DA VINCI study demonstrates current gaps in reaching 2016 and 2019 ESC/EAS LDL-C goals

Overall, 54% attained overall risk-based 2016 goal

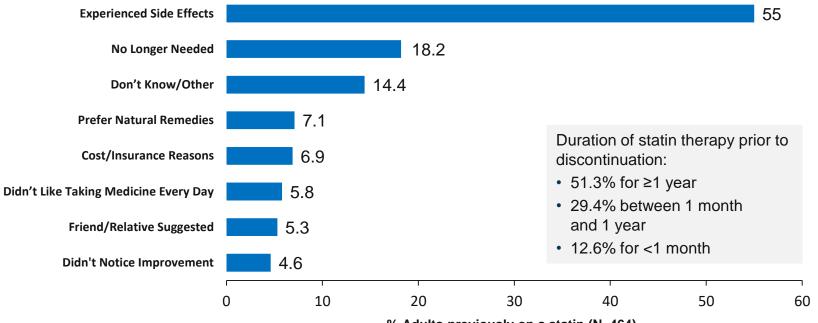
 Low risk: 63%; moderate risk: 75%; high risk: 63%; very high risk: 39%



Only **33%** attained overall **2019 goal**  In patients with established ASCVD, 2019 goal attainment was approximately half that of 2016 (18% vs 39%, respectively)

#### Potential reasons for failure to achieve ESC/EAS guideline recommended LDL-C values

- Lack of HCP familiarity with guidelines
- High cost of medications such as PCSK9 mAb inhibitors


- Patient reluctance to be treated with high-intensity LLT
- Concern about statin-related AEs

The authors concluded that "even with optimized statins, greater utilization of non-statin LLT is likely needed to reduce these gaps for patients at highest risk"

Eur J Prev Cardiol August 2020

### Perceived side effects are the leading cause of statin discontinuation





% Adults previously on a statin (N=464)

*J Am Heart Assoc* <u>2019</u>;8:e011765

# Therapy interruptions are observed with monoclonal antibodies directed against PCSK9

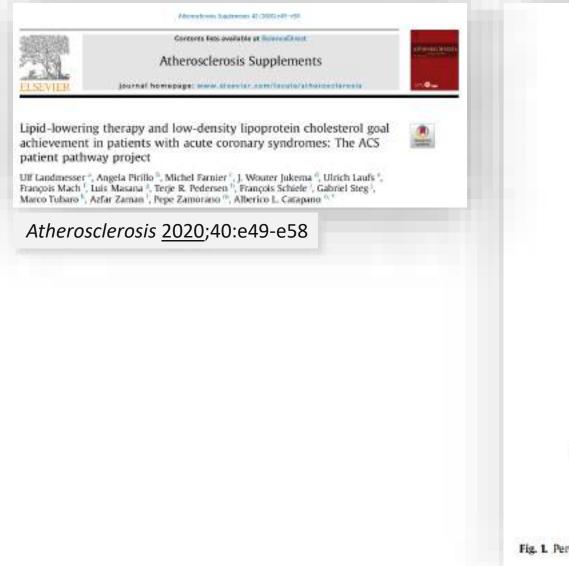


**Retrospective analysis of 6151 patients from a commercial insurance database in the United States initiating PCSK9mAb inhibitors** 

## **52.2%** of patients

experienced an interruption in PCSK9mAb inhibitor therapy of at least 30 days within 1 year of its initiation

 Only 63% remained on a PCSK9mAb inhibitor 1 year after its initiation


## **44%** of patients

experienced an interruption in all lipid-lowering therapy by 1 year of initiation of PCSK9mAb inhibitor

 27% were no longer on any lipid-lowering therapy 1 year after initiating a PCSK9mAb inhibitor



### **Research on ACS management**



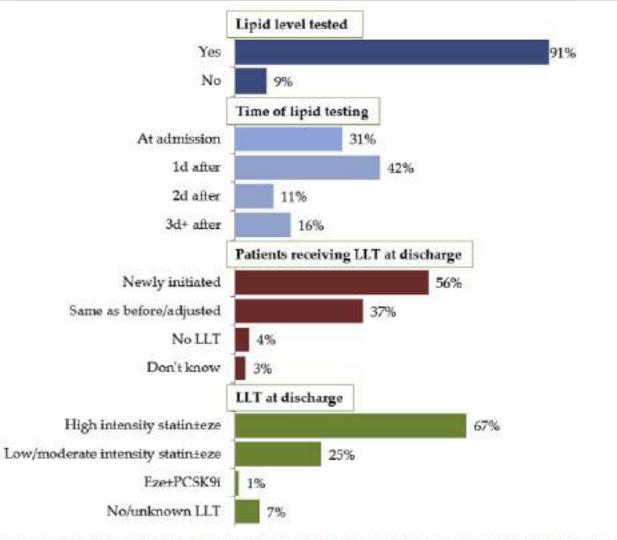



Fig. 1. Percentages of patients who had lipid levels tested and pharmacological approaches during acute phase. LLT: lipid-lowering therapy.

### **Research on ACS management**

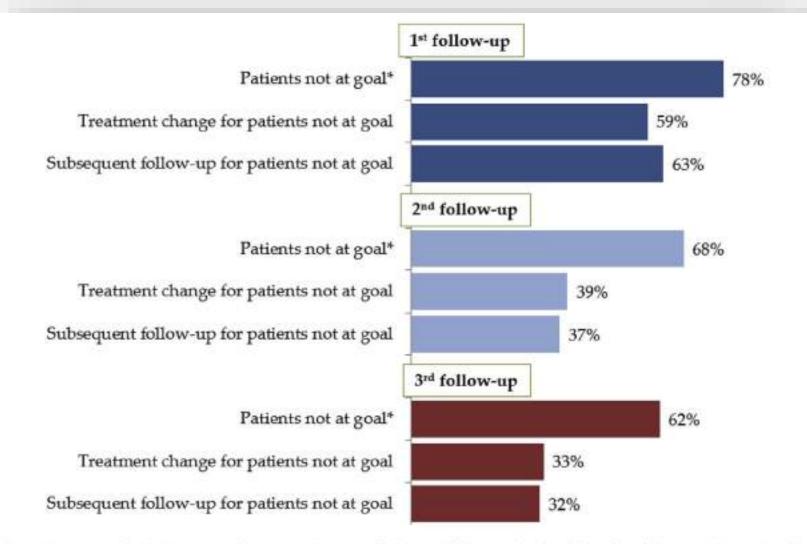
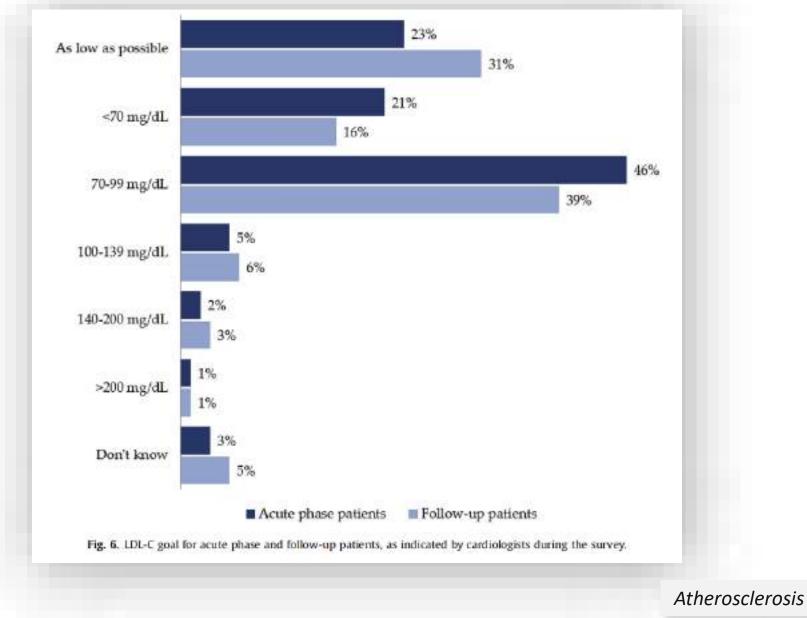
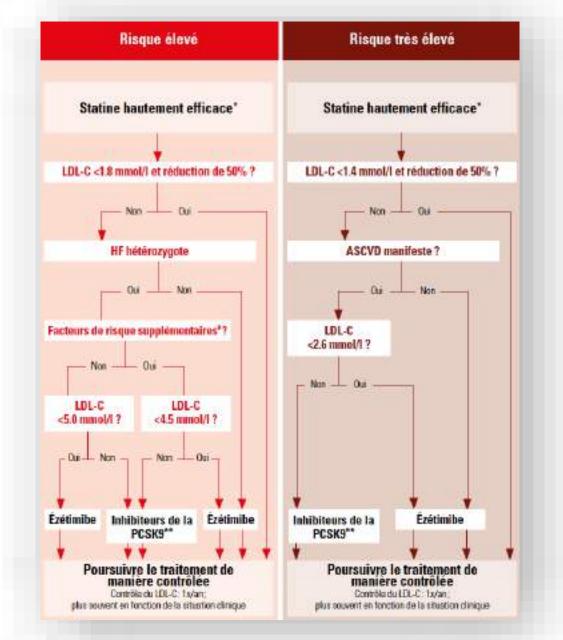
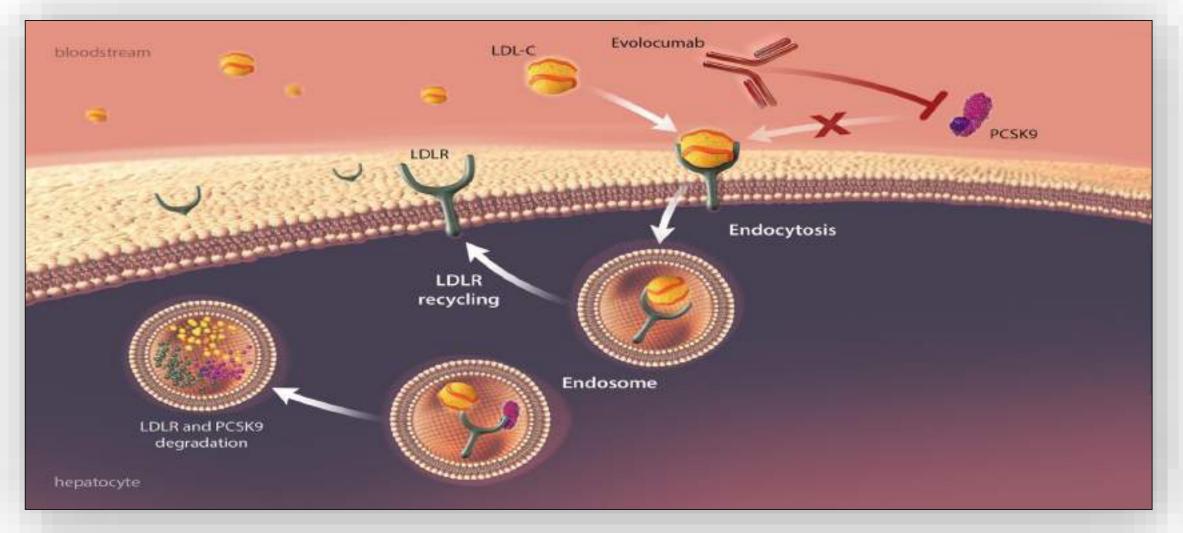




Fig. 4. Percentages of patients not at goal, treatment changes and subsequent follow-up planning during three follow-up visits. \*>70 mg/dL.

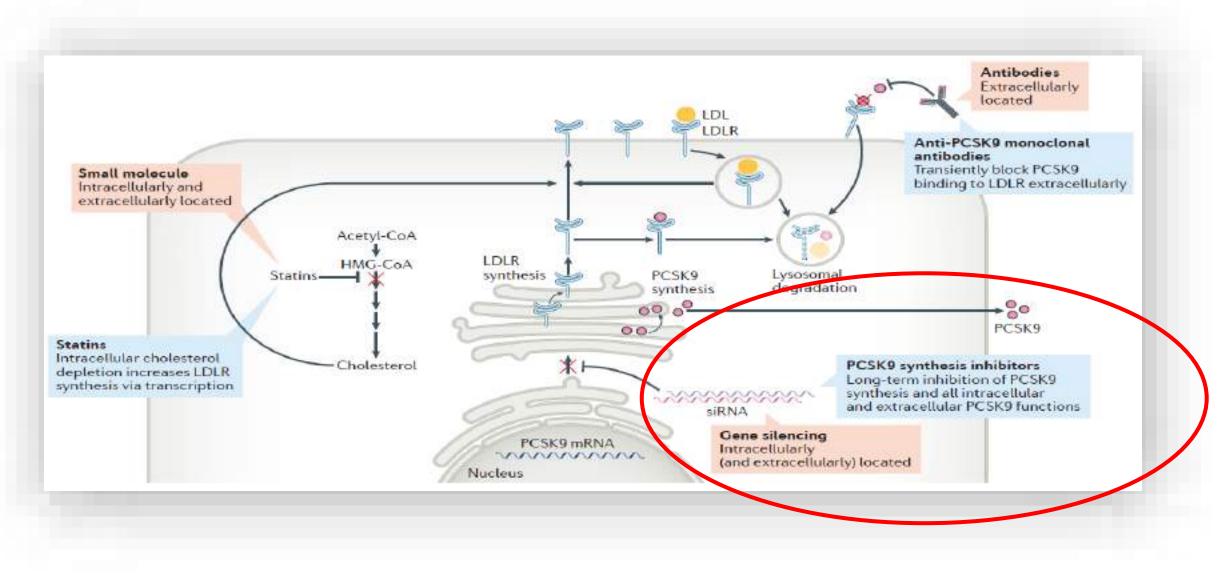

Atherosclerosis 2020;40:e49-e58

### **Research on ACS management**




Atherosclerosis 2020;40:e49-e58

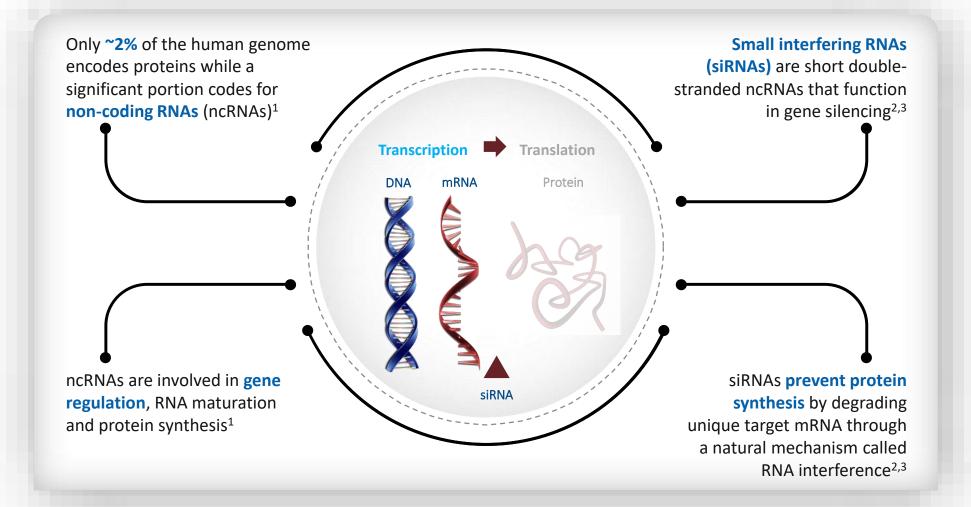
## AGLA/GSLA lipid guidelines (www.agla.ch)




## Fully human monoclonal antibody against PCSK9 inhibits PCSK9/LDL-R interaction



PNAS 2009;106:9820


### **Approaches to reduce LDL-C levels**



Nature Rev Cardiol 2018;15:261

### **Gene-Protein Synthesis**

Non-coding RNAs



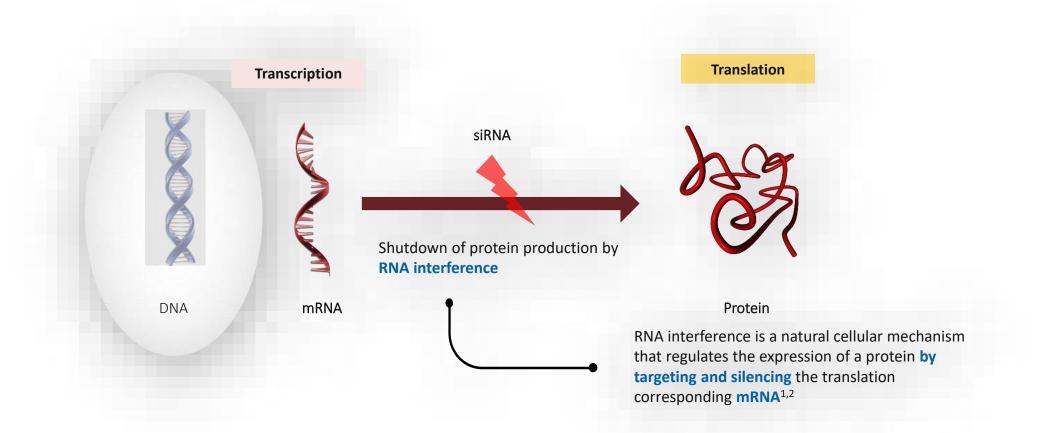
<sup>1</sup>Vascul Pharmacol. <u>2019</u>;114:64 <sup>2</sup>Mol Ther Nucleic Acids. <u>2015</u>;4:e252 <sup>3</sup>Annu Rev Biophys. <u>2013</u>;42:217

### **RNA Therapeutics**

### Synthetic small RNA



In 2006, Andrew Fire and Craig Mello were awarded the Nobel Prize for Physiology or Medicine for their discovery of RNAi, initiating an era of RNA therapeutics (highly specific drugs)<sup>1</sup>


RNAi therapeutics harness the natural biologic pathway of RNAi to regulate expression of specific genes<sup>2</sup>

Advances in RNA therapeutics focus on gene silencing using synthetic short ncRNA, including siRNA, to regulate and/or silence target genes<sup>2,3</sup>

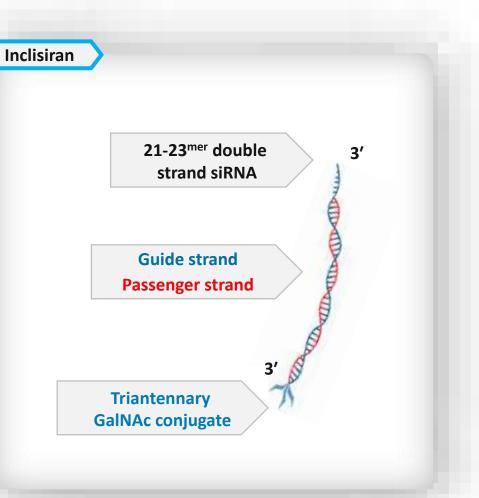
Synthetic siRNA targets a unique mRNA nucleotide sequence and can theoretically target any gene of interest<sup>2</sup>

<sup>1</sup>The Nobel Prize in Physiology or Medicine 2006. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2006/summary <sup>2</sup>Mol Ther Nucleic Acids. <u>2015</u>;4:e252 <sup>3</sup>Cell Metab. 2018;27:714

### RNA interference enables a cell to specifically shut down protein production



<sup>1</sup>Mol Ther Nucleic Acids. <u>2015</u>;4:e252 <sup>2</sup>Annu Rev Biophys. <u>2013</u>;42:217

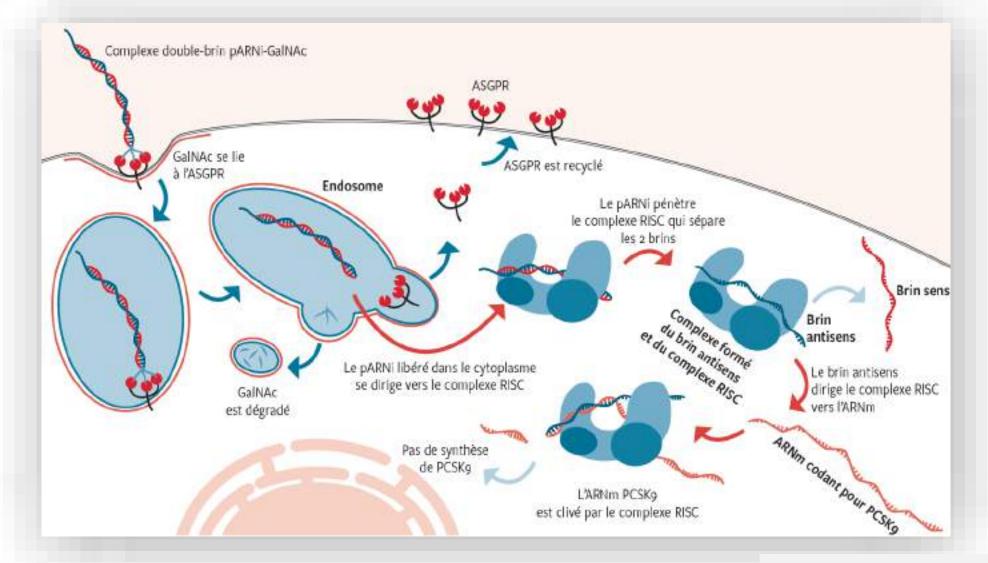

## What is inclisiran ?

### Small interfering RNA

- Synthetic small interfering RNA (siRNA) conjugated with triantennary GalNAc carbohydrate<sup>1,2</sup>
- Utilizes the natural RNA interference mechanism to degrade PCSK9 mRNA and prevent its translation to protein<sup>2</sup>

#### **Chemical Modifications**<sup>3,4</sup>

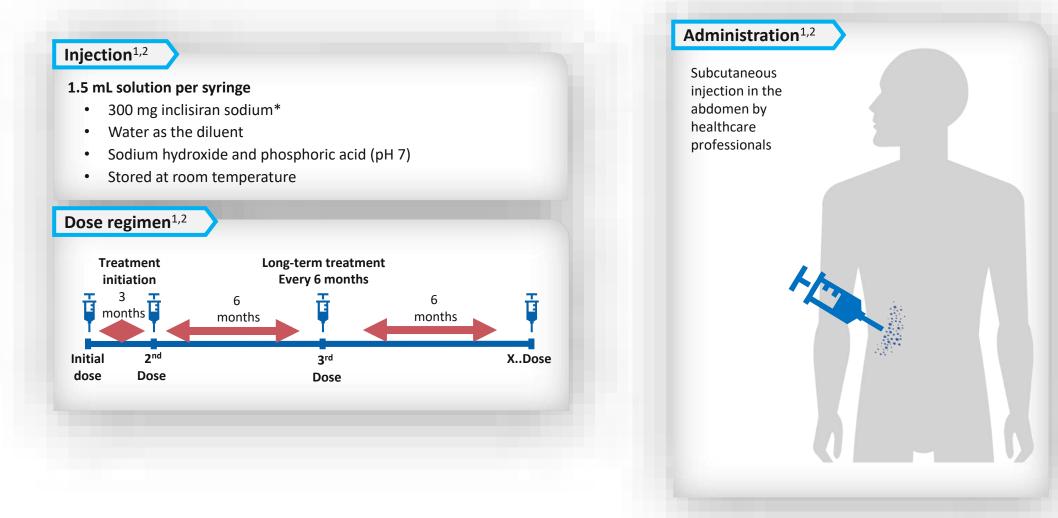
- 2'-fluoro and 2'-O-methyl modifications to increase compound stability
- Backbone phosphodiester linkages modified with phosphorothioates to protect from degradation by liver exonucleases
- Triantennary GalNAc conjugation for targeted hepatic delivery




<sup>1</sup>Circ Res. <u>2017</u>;120:1063 <sup>2</sup>N Engl J Med. <u>2017</u>;376:41

<sup>3</sup>Data on file. Inclisiran. Investigator's Brochure. Novartis Pharmaceuticals Corp; <u>2018</u> <sup>4</sup>N Engl J Med. <u>2017</u>;376:4

### **Mechanism of action**


GalNAc conjugation enables rapid uptake of inclisiran into hepatocytes via asialoglycoprotein receptor (ASGPR)



Rev Med Suisse 26 mai 2021;740:xxx

### **Inclisiran treatment**

### Dose & administration

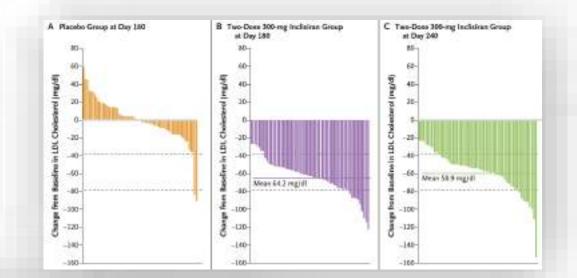


<sup>1</sup>Curr Pharm Des. <u>2018</u>;24:3622; <sup>2</sup>N Engl J Med. <u>2017</u>;376:4

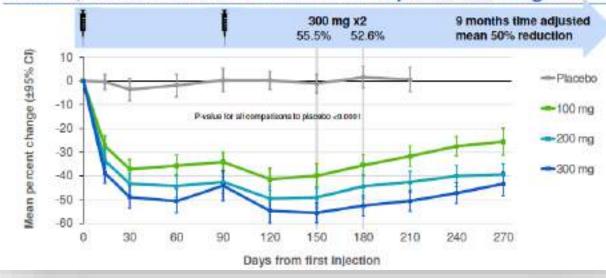
### **Inclisiran clinical studies**

### **ORION** development program

| Étude    | Phase<br>clinique | Patients (N) | Population étudiée                        | Durée de suivi | Critère de jugement | Référence<br>ClinicalTrials.gov |
|----------|-------------------|--------------|-------------------------------------------|----------------|---------------------|---------------------------------|
| ORION-1  | 11                | 500          | ASCVD ou ASCVD RE                         | 180 jours      | Baisse du LDL-C     | NCT02597127 <sup>40</sup>       |
| ORION-2  | Ш                 | 4            | HFHo                                      | 180 jours      | Baisse du LDL-C     | NCT02963311                     |
| ORION-3  | 11                | 490          | ASCVD or ASCVD RE                         | 48 mois        | Baisse du LDL-C     | NCT03060577                     |
| ORION-4  | IIIb              | 15 000       | ASCVD of ASCVD RE                         | 60 m ois       | MACE                | NCT03705234                     |
| ORION-5  | 10                | 45           | HFHo                                      | 24 mois        | Baisse du LDL-C     | NCT03851705                     |
| ORION-6  | 1                 | 24           | Insuffisance hépatique                    | 180 jours      | Pharmacocinétique   | NCT04765657                     |
| ORION-7  | Ê.                | 31           | Insuffisance rénale                       | 60 jours       | Pharmacocinétique   | NCT0315941640                   |
| ORION-8  | UF                | 3700         | ASCVD or ASCVD RE or HFHe/HFHo            | 36 mois        | Baisse du LDL-C     | NCT03814187                     |
| ORION-9  | 18                | 482          | HFHe                                      | 18 mois        | Baisse du LDL-C     | NCT03814187                     |
| ORION-10 | 18                | 1561         | ASCVD                                     | 18 mols        | Baisse du LDL-C     | NCT03399370 <sup>17</sup>       |
| ORION-11 | II.               | 1617         | ASCVD or ASCVD RE                         | 18 mois        | Baisse du LDL-C     | NCT03400800 <sup>17</sup>       |
| ORION-12 | E.                | 48           | Population saine                          | 180 jours      | QT et ECG           | -                               |
| ORION-13 | 18                | 12           | HFHo chez l'adolescent (de 12 à < 18 ans) | 24 mois        | Baisse du LDL-C     | NCT04659863                     |
| ORION-14 | 1                 | 40           | Étude de recherche de dose                | ×.             | Baisse du LDL-C     | NCT04774003                     |
| ORION-15 | .0                | 308          | Étude de recherche de dose, ASCVD         | 270 jours      | Baisse du LDL-C     | NCT04666298                     |
| ORION-16 | 18                | 150          | HFHe chez l'adolescent (de 12 à < 18 ans) | 24 mols        | Baisse du LDL-C     | NCT04652726                     |


## Lowering PCSK9 with siPCSK9

TH NEW ENGLAND JOURNAL & MEDICINE


#### ORIGINAL ARTICLE

#### Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol

Kausik K. Ray, M.D., Ulf Landmesser, M.D., Lawrence A. Leiter, M.D., David Kallend, M.D., Robert Dufour, M.D., Mahir Karakas, M.D., Tim Hall, M.D., Roland P.T. Troquay, M.D., Traci Turner, M.D., Frank L.J. Visseren, M.D., Peser Wijngaard, Ph.D., R. Scott Wright, M.D., and John J.P. Kastelein, M.D., Ph.D.



#### Efficacy: Two dose starting regimen Robust, sustained LDL-C reductions – optimal start regimen



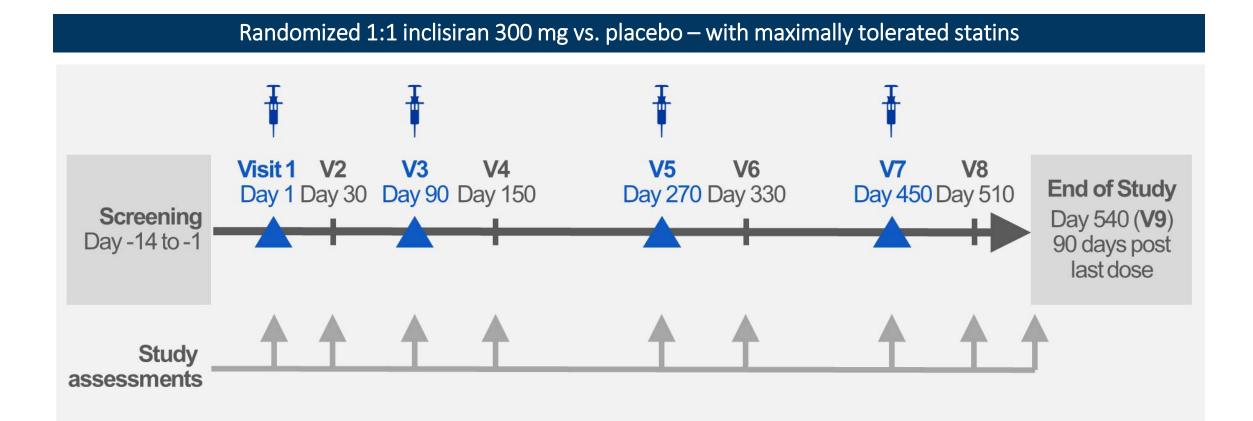
*New Engl J Med* <u>2017</u>;376:1430

## Lowering PCSK9 with siPCSK9

THE NEW ENGLAND JOURNAL & MEDICINE

ORIGINAL ARTICLE

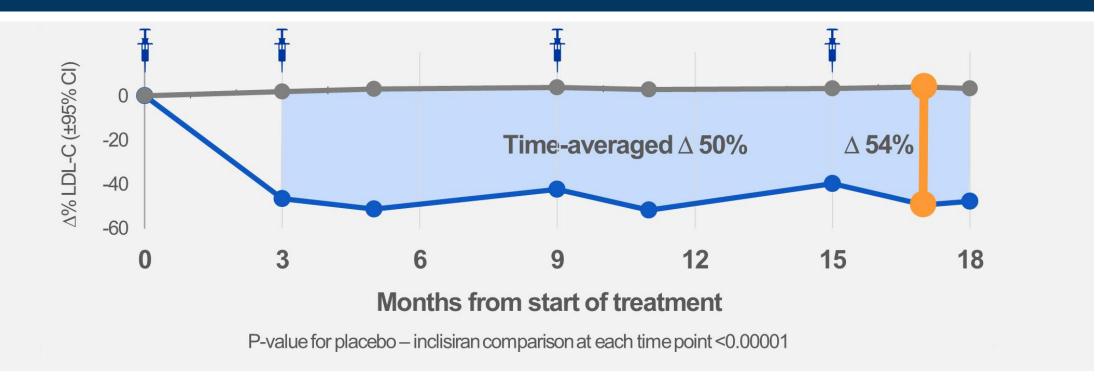
#### Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol


Kausik K, Ray, M.D., M.Phil., R. Scott Wright, M.D., David Kallend, M.D., Wolfgang Koenig, M.D., Lawrence A. Leiter, M.D., Frederick J. Raal, Ph.D., Jenna A. Bisch, B.A., Tara Richardson, B.A., Mark Jaros, Ph.D., Peter L.J. Wijngaard, Ph.D., and John J.P. Kastelein, M.D., Ph.D., for the ORION-10 and ORION-11 Investigators\*

> Efficacy and safety of Inclisiran vs placebo in patients with very high cardiovascular risk, with ASCVD or ASCVD-Risk Equivalent \*

\*Type-2 Diabetes, familial hypercholestereolemia or 10-year risk ≥20%

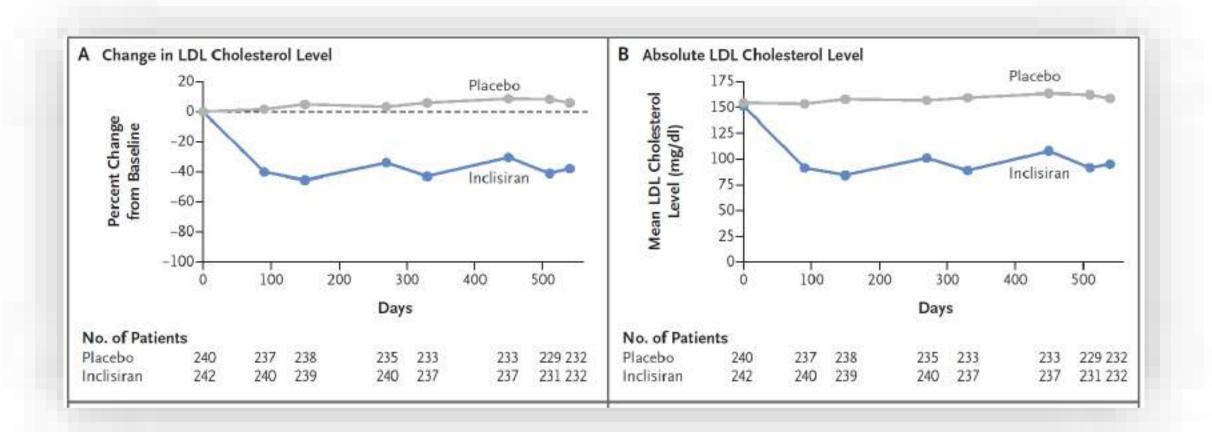
### **ORION-11: Study design**


Eighteen months treatment and observation



### **ORION-11: Efficacy**

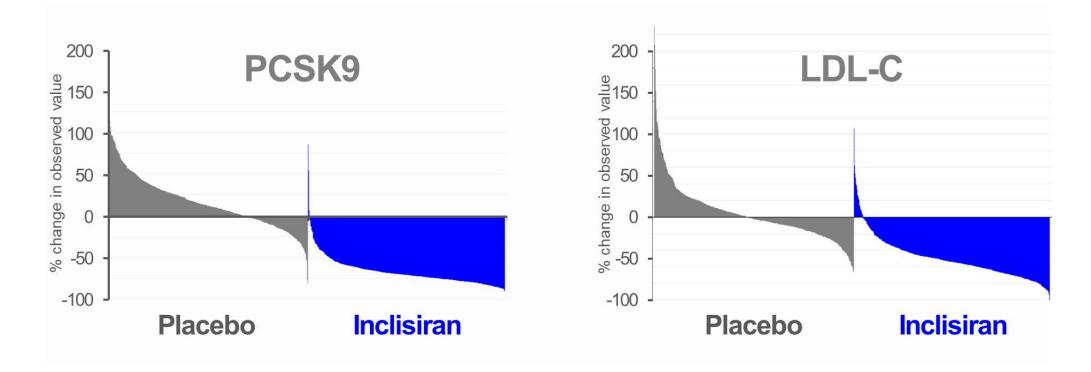
Durable, potent and consistent effect over 18 months


**Percent change in LDL-C over time – observed values in ITT patients** 



1. All 95% confidence intervals are less than ±2% and therefore are not visible outside data points

### **ORION-11: Efficacy**


### Durable, potent and consistent effect over 18 months



### **ORION-11: Efficacy**

Potent, consistent response to inclisiran

Individual patient responses contributing to primary endpoint – 17 months



### **ORION Phase III pooled analysis: Efficacy**

Robust *LDL-C* across pre-specified sub-populations

| Subgroup                       | Inclisiran<br>N | Placebo<br>N | LS Mean                               | Percent Diffe | erence in LDL- | C        |
|--------------------------------|-----------------|--------------|---------------------------------------|---------------|----------------|----------|
| Overall                        |                 |              |                                       |               | I              |          |
| Overall                        | 1833            | 1827         | •                                     |               |                | -54.1    |
| Sex                            |                 |              | -                                     |               |                |          |
| Male                           | 1226            | 1244         | H <b>O</b> H                          |               |                | -53.8    |
| Female                         | 607             | 583          | H <b>H</b> H                          |               |                | -54.8    |
| Age <65 yr or ≥65 yr           |                 |              |                                       |               |                |          |
| <65 yr                         | 853             | 884          | н <b>ө</b> н                          |               |                | -54.3    |
| ≥65 yr                         | 980             | 943          | H <b>O</b> H                          |               |                | -53.7    |
| Age <75 yr or ≥75 yr           |                 |              |                                       |               |                |          |
| <75 yr                         | 1593            | 1575         | •                                     |               |                | -54.0    |
| ≥75 yr                         | 240             | 252          | ⊢●⊣                                   |               |                | -55.0    |
| Body mass index                |                 |              |                                       |               |                |          |
| ≤29.7                          | 942             | 888          | I <b>⊕</b> H                          |               |                | -51.6    |
| >29.7                          | 891             | 937          | H                                     |               |                | -56.8    |
| Race                           |                 |              |                                       |               |                |          |
| White                          | 1670            | 1708         |                                       |               |                | -54.2    |
| Black                          | 130             | 102          | <b>⊢</b> ●                            | -             |                | -53.6    |
| Other                          | 33              | 17           | <b>-</b>                              |               |                | -49.8    |
| Baseline statin treatment      |                 |              |                                       |               |                |          |
| On statin                      | 1686            | 1675         | •                                     |               |                | -54.5    |
| Not on statin                  | 147             | 152          | ⊢●                                    |               |                | -48.8    |
| ntensity of statin treatment   |                 |              |                                       |               |                |          |
| High intensity statin          | 1356            | 1345         | I I I I I I I I I I I I I I I I I I I |               |                | -54.6    |
| Not on high intensity statin   | 477             | 482          | H                                     |               |                | -52.7    |
| Lipid management treatment (LM | IT)             |              |                                       |               |                |          |
| Any statin                     | 1686            | 1675         | • I                                   |               |                | -54.5    |
| Other LMT but no statin        | 75              | 62           |                                       |               |                | -53.9    |
| No LMT                         | 72              | 90           | $\vdash$                              |               |                | -45.6    |
| Metabolic disease              |                 |              |                                       |               |                |          |
| Diabetes                       | 687             | 631          | H                                     |               |                | -56.1    |
| Metabolic syndrome             | 499             | 526          | H                                     |               |                | -56.2    |
| Neither                        | 647             | 670          | H                                     |               |                | -50.6    |
|                                | -100.0          | -75.0        | -50.0                                 | -25.0         | 0.0            | 25.0     |
|                                |                 |              | Inclisiran I                          | better        | Plac           | ebo bett |

New Engl J Med 2020;382:1507

Adverse event profile similar to placebo

| Treatment Emergent Adverse Event (TEAE)              | Pla | acebo | Inc     | lisiran |
|------------------------------------------------------|-----|-------|---------|---------|
| Safety population <sup>1</sup> – AEs in ≥5% patients | N   | = 807 | N = 810 |         |
| Patients with at least one TEAE                      | 655 | (82%) | 671     | (83%)   |
| Diabetes mellitus adverse events                     | 94  | (12%) | 88      | (11%)   |
| Nasopharyngitis                                      | 90  | (11%) | 91      | (11%)   |
| Hypertension                                         | 54  | (7%)  | 53      | (7%)    |
| Upper respiratory tract infection                    | 49  | (6%)  | 52      | (6%)    |
| Arthralgia                                           | 32  | (4%)  | 47      | (6%)    |
| Osteoarthritis                                       | 40  | (5%)  | 32      | (4%)    |

1. Safety population includes all patients who received at least 1 dose of study medication 2. Other TEAEs reported with lower frequencies than 5% in any group had no clinically meaningful differences

Injection site AEs localized, mostly mild and transient

| Injection site TEAEs                                   | Pla | acebo   | Inc | lisiran | Difference |
|--------------------------------------------------------|-----|---------|-----|---------|------------|
| Safety population <sup>1</sup>                         | N   | = 807   | N   |         |            |
| Protocol-defined skin event                            | 4   | (0.50%) | 38  | (4.69%) | 4.19%      |
| (Reaction, erythema, rash, pruritus, hypersensitivity) |     |         |     |         |            |
| Mild                                                   | 3   | (0.37%) | 23  | (2.84%) | 2.46%      |
| Moderate                                               | 1   | (0.13%) | 15  | (1.85%) | 1.73%      |
| Severe                                                 | 0   | (0.0%)  | 0   | (0.0%)  |            |
| Persistent                                             | 0   | (0.0%)  | 0   | (0.0%)  |            |

1. Safety population includes all patients who received at least 1 dose of study medication

New Engl J Med 2020;382:1507

No evidence of liver, kidney, muscle or platelet toxicity

| Laboratory Tests                 |                                       | P       | lacebo | Inc     | lisiran |
|----------------------------------|---------------------------------------|---------|--------|---------|---------|
| Safety population <sup>1,2</sup> | N                                     | N = 804 |        | N = 811 |         |
| Liver function                   | ALT >3x ULN                           | 4       | (0.5%) | 4       | (0.5%)  |
|                                  | AST >3x ULN                           | 4       | (0.5%) | 2       | (0.2%)  |
|                                  | ALP >2x ULN                           | 2       | (0.2%) | 1       | (0.1%)  |
|                                  | Bilirubin >2x ULN <sup>3</sup>        | 8       | (1.0%) | 6       | (0.7%)  |
| Kidney function                  | Creatinine >2 mg/dL                   | 11      | (1.4%) | 5       | (0.6%)  |
| Muscle                           | CK >5x ULN                            | 9       | (1.1%) | 10      | (1.2%)  |
| Hematology                       | Platelet count <75x10 <sup>9</sup> /L | 1       | (0.1%) | 0       | (0.0%)  |

Safety population includes all patients who received at least 1 dose of study medication
 Patients may be counted in more than one category
 No cases met Hy's Law

No difference in serious adverse events

| Serious TEAEs                           | Pla | acebo   | Inclisiran |         |  |
|-----------------------------------------|-----|---------|------------|---------|--|
| Safety population <sup>1,2</sup>        | Ν   | = 804   | Ν          | = 811   |  |
| Patients with at least one serious TEAE | 181 | (22.5%) | 181        | (22.3%) |  |
| All cause death                         | 15  | (1.9%)  | 14         | (1.7%)  |  |
| Cardiovascular                          | 10  | (1.2%)  | 9          | (1.1%)  |  |
| Cancer                                  | 3   | (0.4%)  | 3          | (0.4%)  |  |
| New, worsening or recurrent malignancy  | 20  | (2.5%)  | 16         | (2.0%)  |  |

1. Safety population includes all patients who received at least 1 dose of study medication 2. Patients may be counted in more than one category

### **ORION-11: Exploratory endpoint**

Adverse cardiovascular events

| Cardiovascular TEAEs                               | Pla | cebo    | Inclisiran |        |  |
|----------------------------------------------------|-----|---------|------------|--------|--|
| Safety population <sup>1,2</sup>                   | N = | = 804   | N :        | = 811  |  |
| Pre-specified exploratory CV endpoint <sup>3</sup> | 83  | (10.3%) | 63         | (7.8%) |  |
| Cardiovascular death                               | 10  | (1.2%)  | 9          | (1.1%) |  |
| Fatal or non-fatal MI and stroke <sup>4</sup>      | 30  | (3.7%)  | 12         | (1.5%) |  |
| Fatal or non-fatal MI                              | 22  | (2.7%)  | 10         | (1.2%) |  |
| Fatal or non-fatal stroke                          | 8   | (1.0%)  | 2          | (0.2%) |  |

1. Safety population includes all patients who received at least 1 dose of study medication

2. Patients may be counted in more than one category

3. MedDRA-defined CV basket of non-adjudicated terms cardiac death, and any signs of cardiac arrest, non-fatal MI and/or stroke 4. Post-hoc analysis of hard endpoints

### **ORION-11: Summary**

Twice-a-year inclisiran lowered LDL-C by ≥50% safely

#### Efficacy

- ORION-11 met all primary and secondary endpoints
- Inclisiran reduced the primary LDL-C endpoint by 54% at 17 months, 50% time averaged
- Inclisiran resulted in potent, consistent PCSK9 knock down

#### Safety and tolerability

- Inclisiran safety profile was similar to placebo
- No adverse changes in laboratory markers
- Injection site events 4.2% predominantly mild and none persistent

#### **Exploratory endpoint**

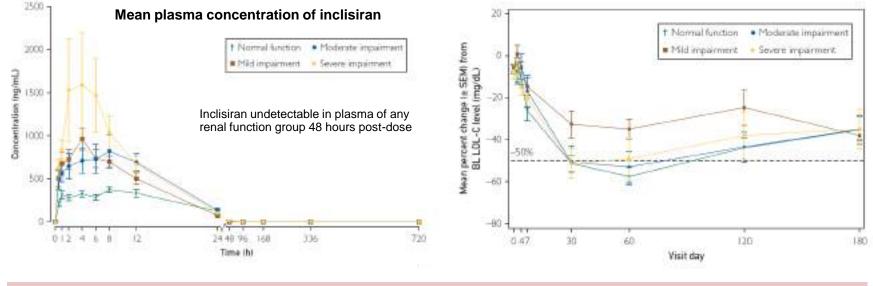
• Numerically fewer CV events were reported for inclisiran than placebo

### **ORION-11: Conclusions and implications**

Inclisiran is the first cholesterol lowering siRNA

Inclisiran achieves durable and potent LDL-C reduction with only 2x yearly injection

Excellent safety profile in a high cardiovascular risk population


Administration by HCP potentially coincides with typical six-monthly patient visits

- Lends itself to routine clinical practice
- Enables provider control over medication adherence
- May offer patients meaningful new choices
- Offering safe, convenient and assured results

### **ORION-17: Renal impairment study**

Dose adjustments unnecessary for impaired renal function

Single 300-mg dose, open-label study in subjects with various levels of renal function (n=31)



Inclisiran safety and tolerability were unaffected by renal impairment

Mayo Clin Proc <u>2020</u>;95:77

### **PCSK9i and C-Reactive Protein**

Research

#### Open access

BMJ Open Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials

Ye-Xuan Cao, Sha Li, Hui-Hui Liu, Jian-Jun Li

| 8<br>11<br>5<br>2<br>14<br>11 | 797<br>2723<br>519<br>169<br>3277 | 0.00 (-0.07 to 0.07)<br>0.12 (-0.48 to 0.43)<br>-0.48 (-1.28 to 0.32)<br>0.35 (-0.28 to 0.96)<br>-0.11 (-0.45 to 0.23) |                                                                                                                                                         | 0<br>0<br>88.6                                                                                                                                          |
|-------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11<br>5<br>2<br>14            | 2723<br>519<br>169                | 0.12 (-0.48 to 0.43)<br>-0.48 (-1.28 to 0.32)<br>0.35 (-0.28 to 0.96)                                                  | -                                                                                                                                                       | 0<br>88.6<br>0                                                                                                                                          |
| 5<br>2<br>14                  | 519<br>169                        | -0.48 (-1.28 to 0.32)<br>0.35 (-0.28 to 0.96)                                                                          | -+                                                                                                                                                      | 68.6<br>0                                                                                                                                               |
| 2<br>14                       | 169                               | 0.35 (-0.28 to 0.96)                                                                                                   |                                                                                                                                                         | • 0                                                                                                                                                     |
| 14                            | 103-23-23                         | markens reserve                                                                                                        | -                                                                                                                                                       | 0.000                                                                                                                                                   |
|                               | 3277                              | -0 11 /-0 45 to 0 23)                                                                                                  |                                                                                                                                                         | 1200                                                                                                                                                    |
|                               | 3277                              | -0 11 /-0 45 to 0 231                                                                                                  |                                                                                                                                                         |                                                                                                                                                         |
|                               |                                   | and for an in a way                                                                                                    |                                                                                                                                                         | 79                                                                                                                                                      |
| 11                            | 931                               | 0.00 (-0.07 to 0.07)                                                                                                   | +                                                                                                                                                       | 62                                                                                                                                                      |
|                               |                                   |                                                                                                                        |                                                                                                                                                         |                                                                                                                                                         |
| 9                             | 624                               | 0.00 (-0.07 to 0.07)                                                                                                   | +                                                                                                                                                       | 0                                                                                                                                                       |
| 11                            | 3065                              | 0.07 (-0.12 to 0.26)                                                                                                   | +                                                                                                                                                       | 0                                                                                                                                                       |
| 5                             | 519                               | -0.48(-1.28 to 0.32)                                                                                                   |                                                                                                                                                         | 88.6                                                                                                                                                    |
|                               |                                   |                                                                                                                        |                                                                                                                                                         |                                                                                                                                                         |
| 9                             | 2010                              | 0.00 (-0.08 to 0.07)                                                                                                   | +                                                                                                                                                       | 0                                                                                                                                                       |
| 16                            | 2198                              | -0.04 (-0.17 to 0.10)                                                                                                  | +                                                                                                                                                       | 70.3                                                                                                                                                    |
|                               | 11<br>5<br>9                      | 11 3065<br>5 519<br>9 2010                                                                                             | 11         3065         0.07 (-0.12 to 0.26)           5         519         -0.48(-1.28 to 0.32)           9         2010         0.00 (-0.08 to 0.07) | 11         3065         0.07 (-0.12 to 0.26)           5         519         -0.48(-1.28 to 0.32)           9         2010         0.00 (-0.08 to 0.07) |

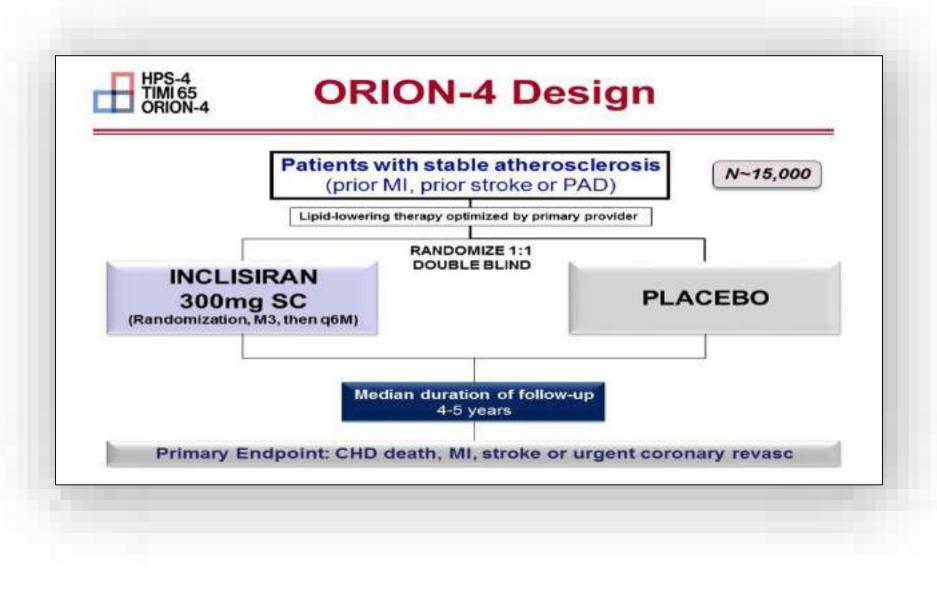
Am J Cardiovase Drugs (2018) 18:271-282 https://doi.org/10.1007/s40/256-018-0270-7



SYSTEMATIC REVIEW

Comparative Effectiveness of Inclisiran 100, 300, and 500 mg in a Population with Hyperlipidemia: A Network Meta-Analysis of Randomized Controlled Trials

Yang Wang<sup>1</sup> - Jinsong Wang<sup>1</sup> - Shenming Wang<sup>1</sup>


The most commonly reported adverse events were musculoskeletal pain, nasopharyngitis, headache, and elevated C-reactive protein (CRP), none of which were significant (p > 0.05).

Am J Cardiovasc Drugs 2018;18:271

BMJ 2018;e022348

# **Opportunities and challenges for the future**

Efficacy of different approaches to lipid lowering



## Inclisiran / Leqvio®

#### Indications cliniques



#### 4. INFORMATIONS CLINIQUES

#### 4.1 Indications thérapeutiques

Lequio est indiqué chez l'adulte présentant une hypercholestérolémie primaire (hétérozygote familiale et non familiale) ou une dyslipidémie mixte, en complément d'un régime alimentaire :

- en association avec une statine seule ou une statine avec d'autres thérapies hypolipémiantes chez les patients ne pouvant atteindre les objectifs de LDL-C sous statine à dose maximale tolérée, ou
- seul ou en association avec d'autres thérapies hypolipémiantes chez les patients intolérants aux statines, ou chez qui les statines sont contre-indiquées.

#### 4.2 Posologie et mode d'administration

#### Posologie

La dose recommandée est de 284 mg d'inclisiran administrée en une seule injection sous-cutanée : une première fois, puis à 3 mois, puis tous les 6 mois.

https://www.ema.europa.eu/en/documents/product-information/leqvio-epar-product-information\_fr.pdf

# Inclisiran clinical studies

#### ORION development program

| Étude    | Phase<br>clinique | Patients (N) | Population étudiée                        | Durée de suivi | Critère de jugement | Référence<br>ClinicalTrials.gov |
|----------|-------------------|--------------|-------------------------------------------|----------------|---------------------|---------------------------------|
| ORION-1  | II.               | 500          | ASCVD ou ASCVD RE                         | 180 jours      | Baisse du LDL-C     | NCT02597127 <sup>40</sup>       |
| ORION-2  | н                 | 4            | HFHo                                      | 180 jours      | Baisse du LDL-C     | NCT02963311                     |
| ORION-3  | 11                | 490          | ASCVD or ASCVD RE                         | 48 mois        | Baisse du LDL-C     | NCT03060577                     |
| ORION-4  | IIIb              | 15 000       | ASCVD of ASCVD RE                         | 60 mois        | MACE                | NCT03705234                     |
| ORION-5  | H.                | 45           | HFHo                                      | 24 mois        | Baisse du LDL-C     | NCT03851705                     |
| ORION-6  | 1                 | 24           | Insuffisance hépatique                    | 180 jours      | Pharmacocinétique   | NCT04765657                     |
| ORION-7  | Ē.                | 31           | Insuffisance rénale                       | 60 jours       | Pharmacocinétique   | NCT03159416 <sup>40</sup>       |
| ORION-8  | UI .              | 3700         | ASCVD or ASCVD RE or HFHe/HFHo            | 36 mois        | Baisse du LDL-C     | NCT03814187                     |
| ORION-9  | 10                | 482          | HFHe                                      | 18 mois        | Baisse du LDL-C     | NCT03814187                     |
| ORION-10 | 18                | 1561         | ASCVD                                     | 18 mois        | Baisse du LDL-C     | NCT03399370 <sup>17</sup>       |
| ORION-11 | H.                | 1617         | ASCVD or ASCVD RE                         | 18 mois        | Baisse du LDL-C     | NCT03400800 <sup>17</sup>       |
| ORION-12 | T.                | 48           | Population saine                          | 180 jours      | QT et ECG           | -                               |
| ORION-13 | H.                | 12           | HFHo chez l'adolescent (de 12 à < 18 ans) | 24 mois        | Baisse du LDL-C     | NCT04659863                     |
| ORION-14 | 1                 | 40           | Étude de recherche de dose                | ×              | Baisse du LDL-C     | NCT04774003                     |
| ORION-15 |                   | 308          | Étude de recherche de dose, ASCVD         | 270 jours      | Baïsse du LDL-C     | NCT04666298                     |
| ORION-16 | 10                | 150          | HFHe chez l'adolescent (de 12 à < 18 ans) | 24 mols        | Baisse du LDL-C     | NCT04652726                     |

#### 2 premières injections suisses début mai 2021





# The modern concept of lipid-lowering strategies to reduce cardiovascular diseases

ARN: du prix Nobel au traitement, la cardiologie au-devant de la scène

Pr FRANÇOIS MACH et Pr OLIVIER MULLEII



# Une baisse du cholestérol LDL de longue durée: enfin le silence

MAËLLE ACHARD\*, ALIKI BUHAYER\*, KEVIN DOBRETZ\*, Pr GEORG EHRET\*, Pr FRANÇOIS MACH\*

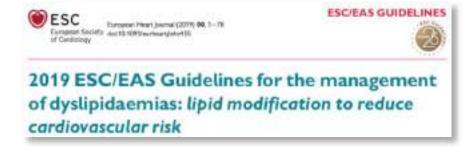
*Rev Med Suisse* <u>26 mai 2021</u>;740:xxx

# The modern concept of lipid-lowering strategies to reduce cardiovascular diseases

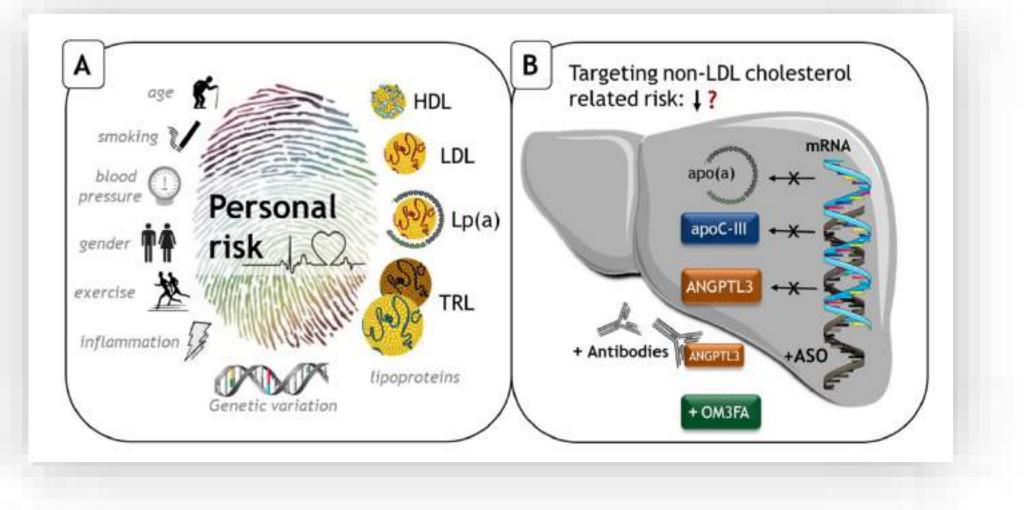
### **Concept change I: Start early**

Less "lipid-exposure" leads to prevention of lesion formation

### **Concept change II: Treat (much more) aggressively**

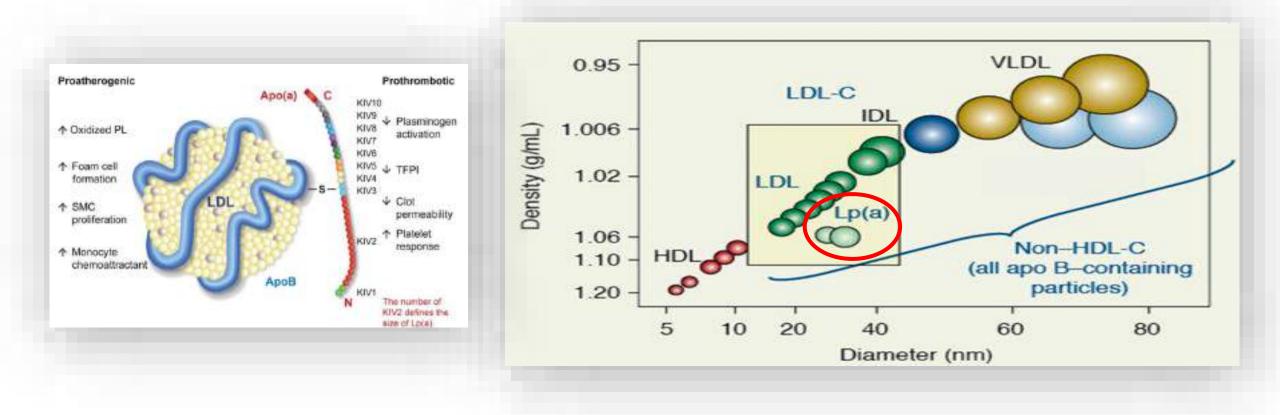

From desirable target to "LDL-C elimination in the blood"

### **Concept change III: Use lipid-lowering combination therapy**


Statin +/- ezetimibe +/- bempedoic acid (+/- PCSK9mAb) induced LDL-C lowering reduces CV risk

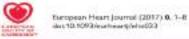
### **Concept change IV: The lower, the better & lower for longer**

Statin +/- ezetimibe + siRNA induced LDL-C lowering with great efficacy, safety and full treatment's adherence




# Novel lipid lowering drugs: PCSK9 and beyond




*Clin Med.* <u>2019</u>;8:1085

# **Characteristics of lipoproteins**



## Lipoprotein(a)

# Lipoprotein(a) is a CV risk factor



REVIEW

Frontiers in Cardiovascular Medicine

#### Lipoprotein(a): the revenant

Baris Gencer<sup>1</sup>, Florian Kronenberg<sup>2</sup>, Erik S. Stroes<sup>3</sup>, and François Mach<sup>1</sup>\*

Cardiology Division, General University Hospitals, Switzentant, "Oppartment of Hedical Genetics, Division of Genetic Spidemiology: Holicolar and Clinical Plenmetrings, Holical University of Innibinsk: Austria: and "Academic Hedical Center, Amsterdam, AZ 1180, The Hietherlands.

European Society doi:10.1093/curricurc/doy385 of Cardiology

EDITORIAL

#### Lipoprotein(a): the perpetual supporting actor

#### **Baris Gencer and François Mach\***

Contrology Divesion, Department of Specializes in Medicine, General University Hospitals, Rue Gabelelle-Perret Geneti 4, 1211 Geneva 14, Suttoriand

Drugs

https://doi.org/10.1007/s40265-019-01243-5

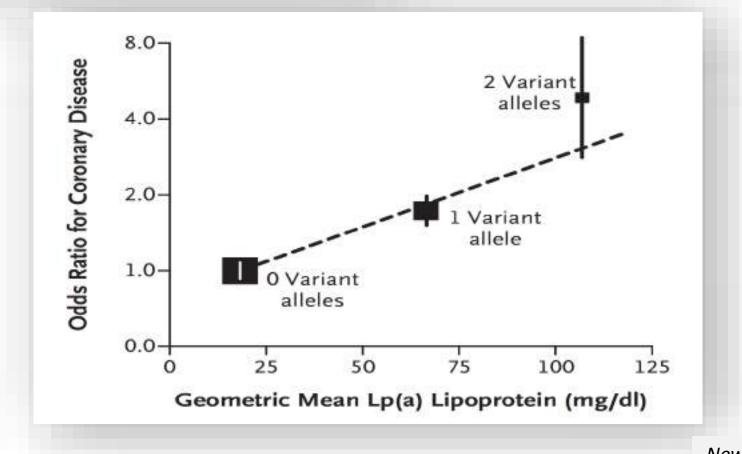
**REVIEW ARTICLE** 

Potential of Lipoprotein(a)-Lowering Strategies in Treating Coronary Artery Disease

Baris Gencer<sup>1,2</sup> · François Mach<sup>1</sup>

#### **Key Points**

High levels of lipoprotein(a) are considered causal risk factor of cardiovascular disease (CVD).


The 2019 ESC/EAS guidelines for the management of dyslipidaemia recommend to measure Lp(a) at least once in each adult person's lifetime.

To lower Lp(a), two antisense oligonucleotides are under development, targeting apolipoprotein (B) and apolipoprotein (a).

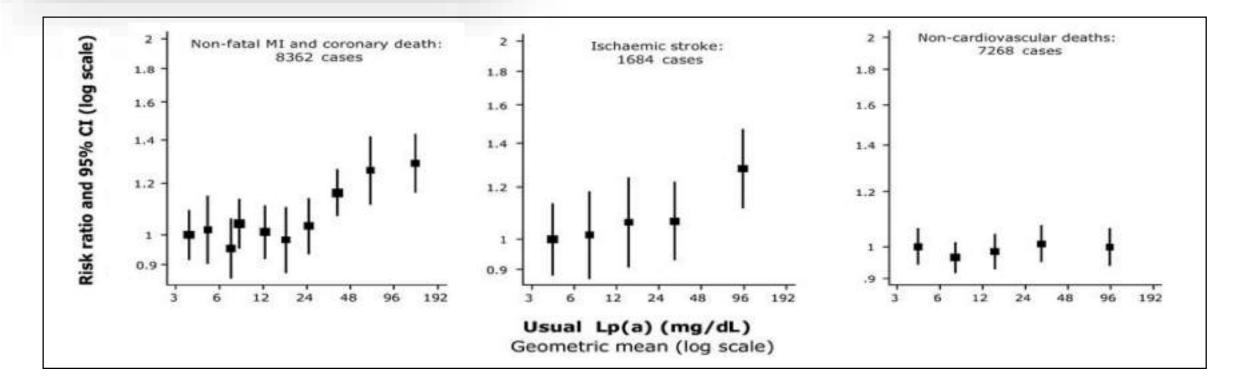
# Lipoprotein(a) and CV risk

ORIGINAL ARTICLE

Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease

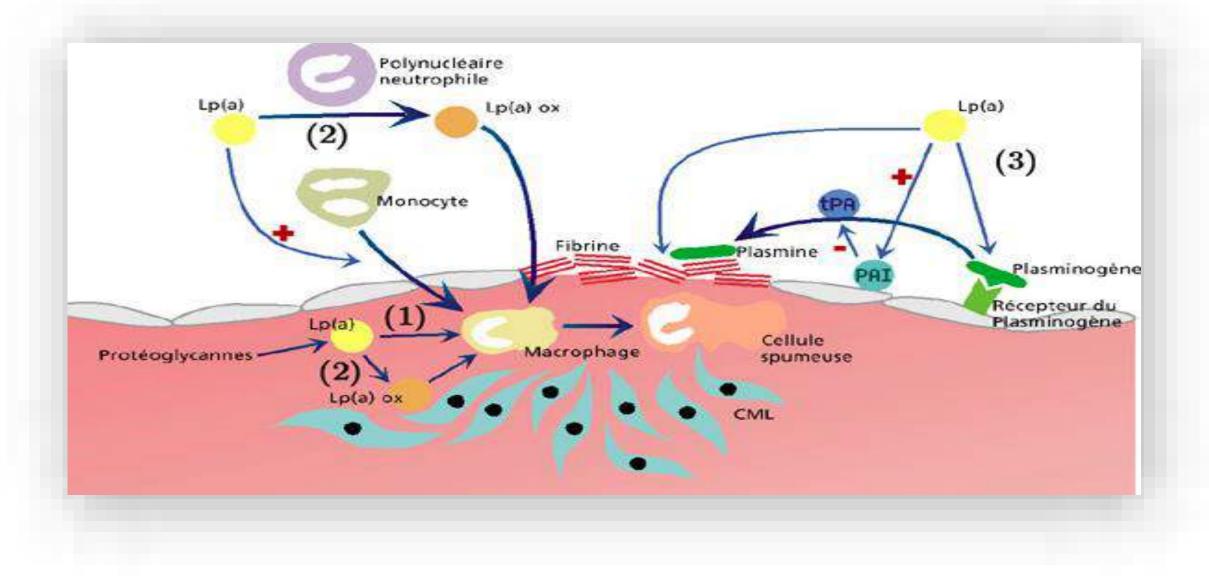


New Engl J Med 2009;361:2518


# Lipoprotein(a) and CV risk

Burceari Heart Journa (2010) 24, 2844-2853 dist0.1003/www.wargWeal86

CURRENT OPINION


#### Lipoprotein(a) as a cardiovascular risk factor: current status

Børge G. Nordestgaard<sup>1+</sup>, M. John Chapman<sup>3</sup>, Kausik Ray<sup>3</sup>, Jan Borén<sup>4</sup>, Felicita Andreotti<sup>3</sup>, Gerald F. Watts<sup>4</sup>, Henry Ginsberg<sup>7</sup>, Pierre Amarenco<sup>8</sup>, Alberico Catapano<sup>9</sup>, Olivier S. Descamps<sup>10</sup>, Edward Fisher<sup>11</sup>, Petri T. Kovanen<sup>12</sup>, Jan Albert Kuivenhoven<sup>13</sup>, Philippe Lesnik<sup>2</sup>, Luis Masana<sup>14</sup>, Zeljko Reiner<sup>15</sup>, Marja-Riitta Taskinen<sup>16</sup>, Lale Tokgözoglu<sup>17</sup>, and Anne Tybjærg-Hansen<sup>18</sup>, for the European Atherosclerosis Society Consensus Panel<sup>1</sup>



*Eur Heart J* <u>2010</u>;31:2844

# Lipoprotein(a) – The perfect killer



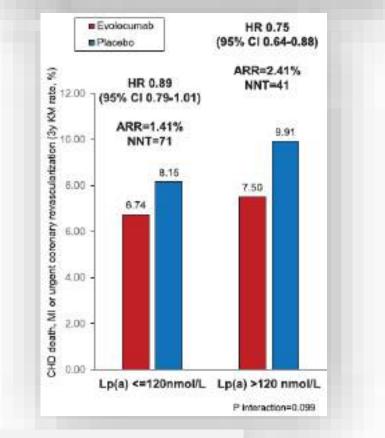
# **Recommendations for lipid analysis**



Recommendations for lipid analyses for cardiovascular disease risk estimation

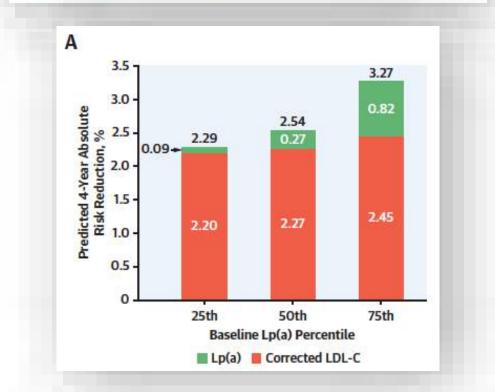
|               | Recommendations                                                                                                                                                                                                                                                                                                                                                                                             | Class <sup>a</sup> | Level <sup>b</sup> |     |   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----|---|
|               | TC is to be used for the estimation of total CV risk by means of the SCORE system.                                                                                                                                                                                                                                                                                                                          |                    | с                  |     |   |
|               | HDL-C analysis is recommended to further refine risk estimation using the online SCORE system.                                                                                                                                                                                                                                                                                                              | 1                  | с                  |     |   |
|               | LDL-C analysis is recommended as the primary lipid analysis method for screening, diagnosis, and management.                                                                                                                                                                                                                                                                                                | 1.1                | с                  |     |   |
|               | TG analysis is recommended as part of the routine lipid analysis process.                                                                                                                                                                                                                                                                                                                                   | 1 - H              | С                  |     |   |
|               | Non-HDL-C evaluation is recommended for risk assessment, particularly in people with high TG levels, DM, obesity, or very low LDL-C levels.                                                                                                                                                                                                                                                                 | 1                  | с                  |     |   |
|               | ApoB analysis is recommended for risk assessment, particularly in people with high TG levels, DM, obesity, metabolic syn-<br>drome, or very low LDL-C levels. It can be used as an alternative to LDL-C, if available, as the primary measurement for<br>screening, diagnosis, and management, and may be preferred over non-HDL-C in people with high TG levels, DM, obesity,<br>or very low LDL-C levels. |                    | c                  | Ľ   |   |
| .p(a) measur  | ement should be considered at least once in each adult person's lifetime to identify those with very high                                                                                                                                                                                                                                                                                                   |                    |                    |     |   |
| nherited Lp(  | a) levels >180 mg/dL (>430 nmol/L) who may have a lifetime risk of ASCVD equivalent to the risk associa                                                                                                                                                                                                                                                                                                     | ted                |                    | lla | c |
| with heteroz  | ygous familial hypercholesterolaemia.                                                                                                                                                                                                                                                                                                                                                                       |                    |                    |     |   |
| a granner and | be considered in selected patients with a family history of premature CVD, and for reclassification in peo<br>derline between moderate and high-risk.                                                                                                                                                                                                                                                       | ole                |                    | lla | ¢ |

#### www.escardio.org/guidelines


2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk (European Heart Journal 2019 -doi: 10.1093/eurheartj/ehz455)

## PCSK9 mAb - Lp(a) and CV outcomes ?

#### Circulation


#### **ORIGINAL RESEARCH ARTICLE**

#### Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk Insights From the FOURIER Trial



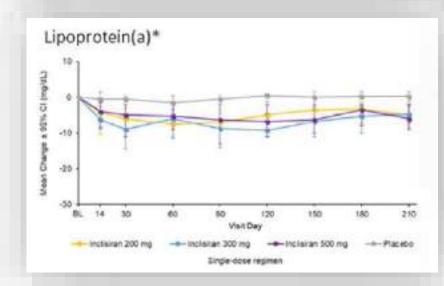
**ORIGINAL INVESTIGATIONS** 

Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome



*Circulation* <u>2019</u>;139:1483

JACC 2020;75:133


# Inclisiran and Lp(a)

#### Circulation

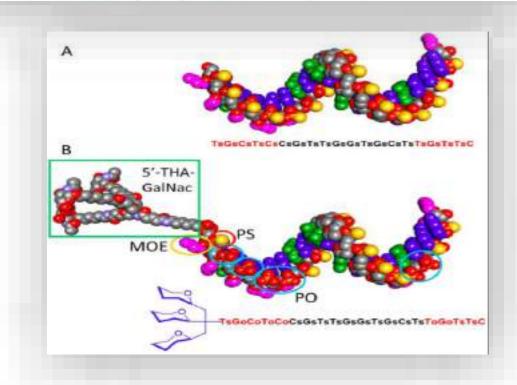
#### **ORIGINAL RESEARCH ARTICLE**

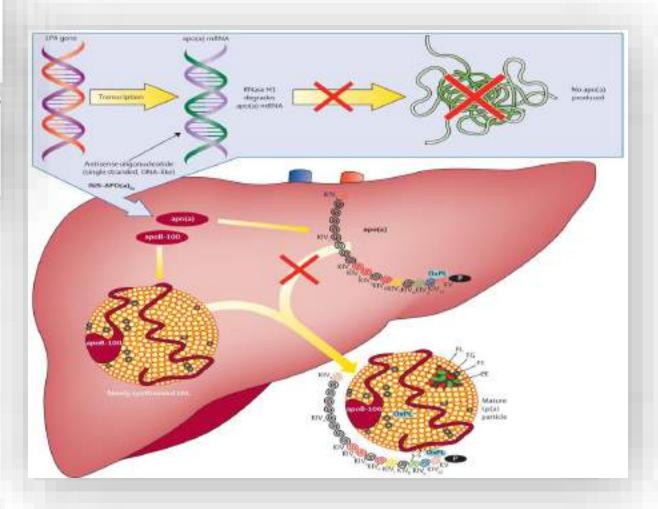
#### Effect of an siRNA Therapeutic Targeting PCSK9 on Atherogenic Lipoproteins

Prespecified Secondary End Points in ORION 1



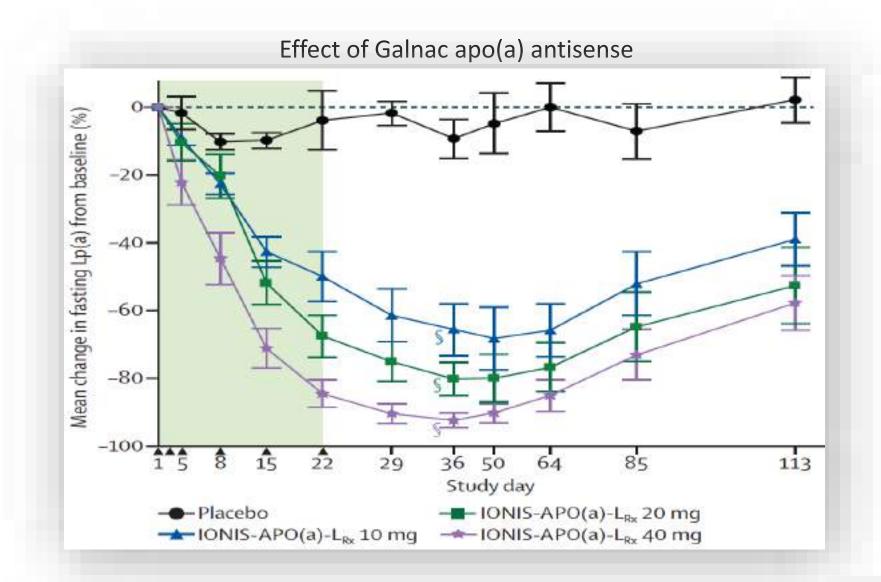
|          |                     | 5ingle-Do                      | se Groups                     |                                | Double-Dose Groups   |                                |                                |                                |
|----------|---------------------|--------------------------------|-------------------------------|--------------------------------|----------------------|--------------------------------|--------------------------------|--------------------------------|
|          | Placebo (n=64)      | 200 mg<br>Inclisiran<br>(n=60) | 300 mg<br>Indisiran<br>(n=60) | 500 mg<br>Inclisiran<br>(n=60) | Placebo<br>(n=61)    | 100 mg<br>Inclisiran<br>(n=59) | 200 mg<br>Inclisiran<br>(n=60) | 300 mg<br>Inclisiran<br>(n=59) |
| IDL-C    |                     | 1                              |                               |                                |                      |                                |                                | 0                              |
| Baseline | 127.2 (52.31)       | 122.5 (34.73)                  | 119.5 (41.56)                 | 138.1 (46.05)                  | 124.9 (44.20)        | 127.9 (47.85)                  | 137.1 (70 38)                  | 131.B (58.51)                  |
| Day 180  | 127.8 (48.77)       | 87.7 (38.98)                   | 75.2 (44.65)                  | 82.4 (36.57)                   | 124.1 (39.57)        | 82.9 (40.36)                   | 82.0 (70. 3)                   | 67.6 (55.81)                   |
| Lp(a)    |                     |                                |                               |                                |                      |                                |                                |                                |
| Baseline | 25.3<br>(8.5–122.0) | 43.0<br>(11.0–127.0)           | 36.8<br>(18.8–147.0)          | 33.3<br>(10.8–151.5)           | 44.5<br>(12.0–146.0) | 32.0<br>(11.5–134.0)           | 41.0<br>(9.8–140.3             | 47.0<br>(11.0-160.5)           |
| Day 180  | 22.0<br>(9.0–138.0) | 29.5<br>(9.0-22.5)             | 31.5<br>(14.0-125.0)          | 19.5<br>(8.0–145.0)            | 52.0<br>(9.0–148.0)  | 29.0<br>(7.0–103.0)            | 32.0<br>(6.0–132.5)            | 36.0<br>(8.0–130.0)            |


# Lowering Lipoprotein(a) with apo(a)-antisense


Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study

Solirios Tainskos, Micholus J Viney, Steven G Hughes, Walter Singleton, Mark J Graham, Brende F Baker, Jennifer L Barkey, Qingging Yang, Santica M Marcowise, Richard S Genry, Rosenne M Craoke, Joseph J Witstum

Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials


Nicholas J Viney, Julian C van Capelleview, Richard S Grary, Shuting Xix, Joseph A Tami, Rosler Z Yu, Santica M Marcavina, Steven G Hughes, Mark J Graham, Rosonne M Craoke, Stonley T Craoke, Joseph L Witztum, Erik S Straes, Sothios Tsimibes





Lancet <u>2015</u>;386:1472

# Lowering Lipoprotein(a) with apo(a)-antisense



Lancet 2016;388:2239

# Lowering Lp(a) with apo(a)-antisense – RCT

|                               | onal Library of Medicine Trials.gov            | Find Studies -     | About Studies -        | Submit Studies -       | Resources -      | About Site -   |
|-------------------------------|------------------------------------------------|--------------------|------------------------|------------------------|------------------|----------------|
| Home > Search                 | Results > Study Record Detail                  |                    |                        |                        | 5                | Save this stud |
| Assessing th                  | ne Impact of Lipoprotein (a) Lowering With TQJ | 230 on Major C     | ardiovascular Ev       | ents in Patients V     | With CVD (Lp(a   | a)HORIZON)     |
| _                             |                                                |                    | ClinicalTrials.        | gov Identifier: NCT040 | 23552            |                |
|                               | tion                                           |                    |                        |                        | Go to            | •              |
| tudy Descrip                  | Juon                                           |                    |                        |                        | GOIG             |                |
| tudy Descrip<br>Brief Summary |                                                |                    |                        |                        | GOIL             |                |
|                               |                                                | e reduction of car | diovascular risk in pa | tients with establishe |                  |                |
| Brief Summary                 | y:                                             | e reduction of car | diovascular risk in pa |                        | d CVD and elevat |                |

#### P2338

#### Safety, Tolerability, and Efficacy of Single-dose AMG 890, a Novel siRNA Targeting Lp(a), in Healthy Subjects and Subjects With Elevated Lp(a)

#### Michael J Kores, <sup>1</sup> Patrick Maurice Moriarty,<sup>2</sup> Joel Neotel,<sup>3</sup> Seth J Bourn,<sup>4</sup> Morthe Hernondoz-Illos,<sup>5</sup> Howard S Wolntreach,<sup>6</sup> Jensifer Hellawe I,<sup>2</sup> Tracy Varrieus, <sup>1</sup> Winnie Sohn,<sup>2</sup> Huei Wang,<sup>10</sup> Mary Ellott-Davey,<sup>11</sup> Herina Kassahum,<sup>4</sup> Gerald F Watts<sup>104</sup>

Vacioastivite Carity for Chinesi Research, Jacksonville, F.L. Rumversky of Kontos Monical Caritie Kanada Chines, K.S. Rohning County Robotic Carity, Tosta, CA. Preventive Caritology Inc. Bour Rater, R., 1049 Milla, Marin, F.L. Mirol Langtone Medical Caritie Levy York MY, Pangen, Studie San Francisco, CA. Vangen, Caritologie, MA, Vangen, Thousant Casis, CA, Wangen, Newtury Pork, CA. "Vangen Ltd. Caritology, Wulkers by cl. Wastern Australia, Perth, Rastmas

Same Annue and Annue and the local line in the first state of the same and the same

#### **Background & Objective**

- Listerstein(s) [Lefs] is a fax, base for repotential effection and other attended and constants.
- No approved -real lines, setectively target Lp(a) and have lieve bestrated indicition in david users (or events).
- Orpacisar (FANG BBC) is a sense interfaring riskinucle is used in PDNA) designed to induce for production of table) by targeting measurings: RNA transactions from the LVA group.
- In this study (NCT 03525882), we evaluated the safety, (derivativy phermatolicelies dPK), and phermacodynamics of operation

#### Methods

- Adults with positive concentrations at cancering of Lp(2) who is wrate model, positions 1. So an 2000 minute, bothoms 6. 71, were containitized in the receive a windle substanting to be of of positive or minute-for [Figure 5.]
- The prenary endocers were treatment-emergent advance events, safely
- Introductory analytes, what signs, and ECOs, decondary and points installed PR parameters and centert change from baseline in Lotal

#### Figure 1. Study Design

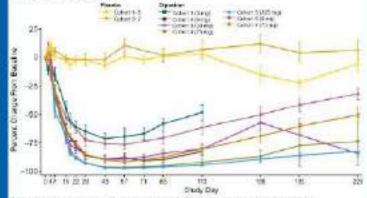
| -   | ÷   | 1 Hill |   |                          | - Inderedat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11        |
|-----|-----|--------|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ×.1 | 14  | 1      |   | Trees Manual State       | 515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.13     |
| 8   | 112 | - 66   |   | Trees Party No.          | • · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000      |
| 1   | 12  | 4      |   | Same a                   | Westing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34,201    |
| 4   | 44  | 1      |   | 100                      | San'ta Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128 (24   |
| 1   | 18  | 4      |   |                          | Contraction in the local division of the loc | the fits  |
|     |     |        | 1 |                          | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | liwin     |
|     | 84  |        |   |                          | Contractor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 04.717    |
| •   |     |        | 1 | haray ball the statement | Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Aug 100 |
| 4   | 46  |        | 1 | An opening with the      | Ettering warding and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 100 100 |

(1) officing of the design of \$2, which apply function is not addressed or designed and the part of the design of the designed of the design of the desig

#### Disclosures & Acknowledgements

Bit is appendix to each contract that encoderminist (# 1993, A. P. V. T. Spinster, and an exception of regions). BPA interaction appendix that the second state of the second states of the second state. The transmission of the second states are a second state of the second states in the second state of the second states of the second states

No. 241 year on a conditioning and the first and fill an approximate provide the serving meeting. Descent men educated angles of and at


#### During the treatment period, one dose of olpasiran:

- Was well tolerated
- Significantly reduced Lp(a) with observed approximate median percent reductions of >90% at doses ≥9 mg
- Led to reductions in Lp(a) persisting 3 to 6 months at doses ≥9 mg

#### Table 1. Treatment-emergent Adverse Events

|                                         |                   | ris 1-0<br>Tana Citté consil. | Cohora ( 4 /<br>Servening Lipit) 2010 erectil. |                         |  |
|-----------------------------------------|-------------------|-------------------------------|------------------------------------------------|-------------------------|--|
| Advente eventa, e (%)                   | Phicado<br>(NH10) | Olaxainan<br>(Nr30)           | Hueste<br>plute                                | Orpanal tom<br>(Muttal) |  |
| hay NE                                  | 1000              | 10,404                        | + 806-71                                       | 16,58.0                 |  |
| Berlows AE                              | 2                 |                               | 18630                                          | 1.8                     |  |
| It's scentrag a men than one safeet are | ing colority.     |                               |                                                |                         |  |
| the belt                                | -1(M.C            | 10.000                        | 5005)                                          | 3,92.4                  |  |
| Upper rangimitary tract induction       | 1696.0            | 4:02                          | 115.7                                          | 2(987)                  |  |
| bark par                                | 10.00             | 1(23)                         | 4                                              | 3(181)                  |  |
| Mercy and her related pub-              | 1,000             | 1(5.5)                        | raid:                                          | 5.8.02                  |  |
| Viel appenting and in body infection    | 1                 | 103                           |                                                | 208.11                  |  |
| Bood areat to phoop taking a increased  | 0104.0            | 11231                         |                                                |                         |  |
| Cardinalise                             | ¥                 | 1.5.5                         |                                                | 18.6                    |  |
| Bin chanier                             | 1                 | 103                           | 0                                              | 168                     |  |
| Folga                                   | 2                 | 4                             | 1047                                           | 16.0                    |  |
| Artinutate                              | 1 N.              | 10.0                          |                                                | 18.6                    |  |
| Fableza                                 | direction .       |                               | FIMT:                                          |                         |  |
| He states want                          | -                 |                               |                                                |                         |  |
| is a crice units mostline               |                   | 10.15                         | 3.0                                            |                         |  |

#### Figure 2. Lp(a) Percent Change from Baseline After a Single Dose of Placebo or Olpasiran

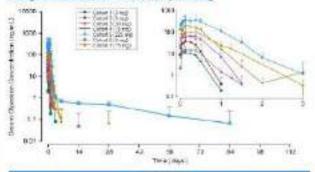


deserve values and/or more of personing and tap 1 (m does solide 11 per 1 years set and doe the track we are solider over No inclusion content and (2 100000)

Internet Rest. Assessment, Roversaw 13-11, 2021

#### Results

Table 2. Baseline Characteristics


| Benefice Characteristic      |                      | Cohon<br>Servenik<br>210 to St |                       | Coherts 5 \$7<br>Sevening Lp(H)<br>2009 smolt |                    |
|------------------------------|----------------------|--------------------------------|-----------------------|-----------------------------------------------|--------------------|
|                              |                      | Patebo                         | Digensinen<br>(4::34) | Pesoto                                        | Operation<br>Hotel |
| Aprilyeant, and 1901         |                      | 400.5                          | Stellow.              | £683                                          | 101.04             |
| Weelert, n (%)               |                      | 2050                           | 1336                  | + (0.7)                                       | 101.0              |
| Bruisia a 75)                | Hepaticiation        | #(#Dig)                        | 184023-               | 13843                                         | 120.00             |
|                              | Not Hispenial, adies | BIELE .                        | 1100.5                | 1.992.0                                       | C 14 CYAR          |
| Reas, 1 (N)                  | Ulect                | 3 (8.0)                        | 1016                  | 0                                             | 1384               |
|                              | Wite                 | 7.00.0                         | 2168.0                | 1,655                                         | 15348              |
|                              | Char                 |                                | 0                     | /(67)                                         | 1054               |
| BRL boint mean (SD)          |                      | 0180.5                         | 270 58                | 2011211                                       | 2763               |
| Lotel wheld, median (01, 03) |                      | (24(14,10)                     | 102.07.14             | 22220.301                                     | 307428.334         |

#### Pharmacokinetic Results

 Organization was residing absorbed with mean Caus obcoming within 7.5 means after dowing. Mean half-46 (http://organization.3.co.8 hours with the vast majority estimated from soft means that 20 of dovo.

 Organism AUC exposures in subjects with Loral 2000 rmsh, (Cohortz 6 and 7) ware 18–30% rows: than in subjects with Loral 270 to 4100 mmsh, (Cohorts 2 and 4)

Figure 3 Mean (30) Serum Operation Concentration-Time Profiles Following A Single SC Administration of 3, 9, 30, 75, or 225 mg



#### Conclusions

 No classy canonic wave classified to classes in the steps case cluby

 No classifier device classes is liver tests, platelets or cospublicity acceleration previol targetime steps belowed

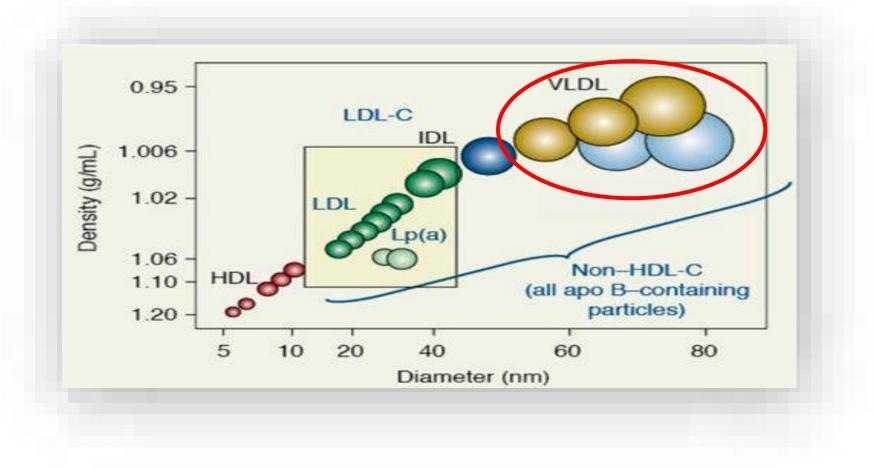
Epitemic economies of experime increased approximately nine-perpetitionally

In solution Alls converses Local (montain Local) = 1.22 microl. (potents 1 to 6) and 253 mmovil. (potents 6) and 7) A single does of objective signation by net cost Local with observed approximate mechanipercent reductions of ACV and potencial along in a case-dependent manage.

- Lp(in) rectactions permitted for 3 to 5 months at colors of 23 mg
- For the protocol, follow up is responding unit ipolite resized in to 60% of baseline upon

These results vanidate the approach of samp technologie raig techniftikk to lower Large in rando with streaked Large.

Operator incently meaned a Pair Trock Despiration from the US Feed and Drug Administration A Preser 2 study to enalistic effortivity and the other young the study of operation is subject with elements (2000) is currently undering


#### References

1. Waterpartiell, and Turkaery 20(1):108-200. In World and Zullaam (Willingsport) 1. Week Divide Vendered 2019/2019/101

C Millinger Inc.

# **Characteristics of lipoproteins**

**Remnants cholesterol** 

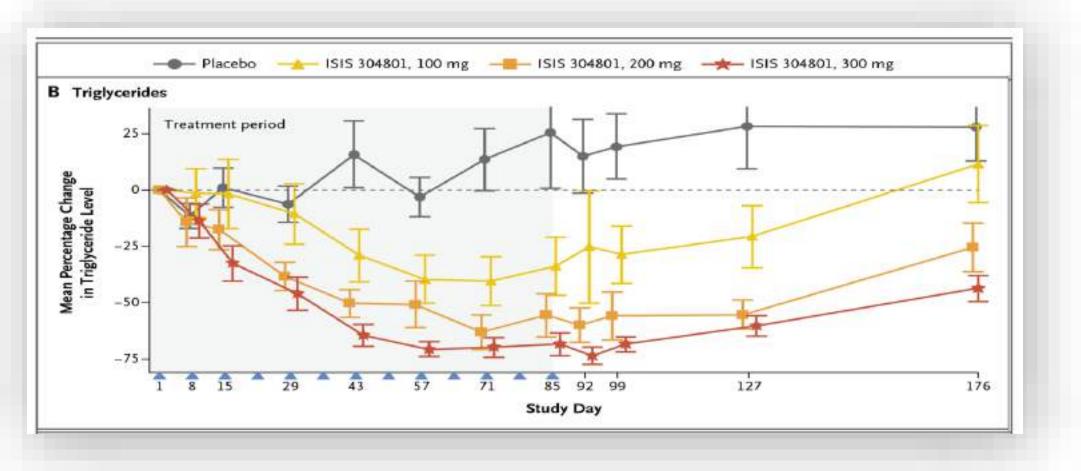


# Lowering Remnant cholesterol with Apo-CIII-antisense

'Remnant' cholesterol is next on the list Apo-CIII antisense reduces TG and remnant cholesterol

#### ORIGINAL ARTICLE

#### Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides


Mark J. Graham, M.S., Richard G. Lee, Ph.D., Teresa A. Brandt, Ph.D., Li-Jung Tai, M.D., Ph.D., Wuxia Fu, M.S., Raechel Peralta, M.S., Rosie Yu, Ph.D., Eunju Hurh, Ph.D., Erika Paz, Bradley W. McEvoy, D.P.H., Brenda F. Baker, Ph.D., Nguyen C. Pham, B.S., Andres Digenio, M.D., Stoven G. Hughes, M.B., B.S., Richard S. Geary, Ph.D., Joseph L. Witztum, M.D., Rosanne M. Crooke, Ph.D., and Sotirios Tsimikas, M.D. Table 2. Absolute Levels of ANGPTL3, Lipids, and Lipoproteins at Day 43 after Initiation of ANGPTL3-L<sub>Rx</sub> Treatment in the Multiple-Dose Groups.\*

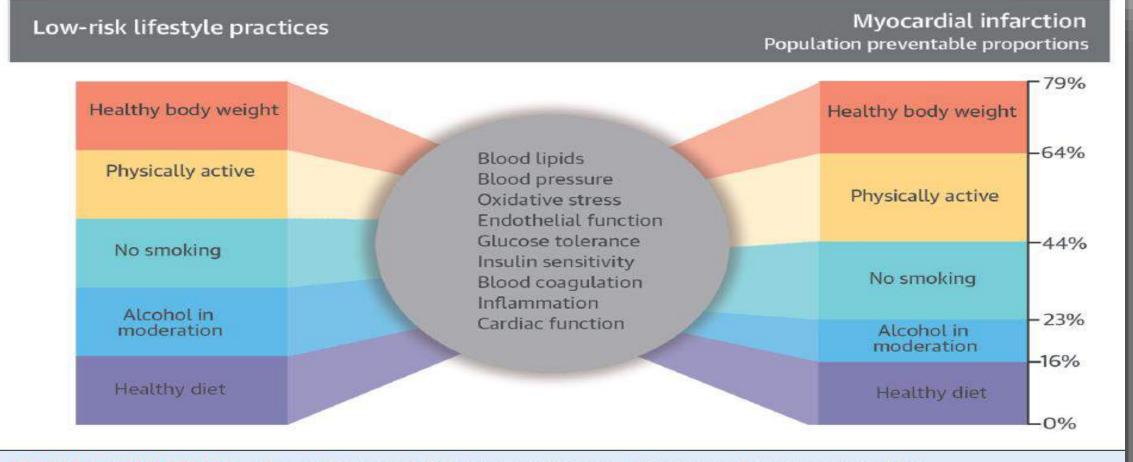
| Measure                      | Placebo<br>(N = 8) | ANGPTL3-L <sub>Rx</sub> |                |                |                |  |
|------------------------------|--------------------|-------------------------|----------------|----------------|----------------|--|
|                              |                    | 10 mg<br>(N=6)          | 20 mg<br>(N=5) | 40 mg<br>(N=6) | 60 mg<br>(N=6) |  |
| ANGPTL3 — ng/ml              | 132.5±38.9         | 45.3±22.9†              | 24.5±7.5†      | 21.1±5.0†      | 16.6±8.1†      |  |
| Triglycerides — mg/dl        | 183±76             | 135±55                  | 73±20†         | 93±24‡         | 82±27†         |  |
| LDL cholesterol — mg/dl      | 151±18             | 126±29                  | 124±24         | 115±31‡        | 85±26†         |  |
| VLDL cholesterol — mg/dl     | 37±15              | 27±11                   | 15±4†          | 19±5‡          | 16±6†          |  |
| Apolipoprotein B — mg/dl     | 122±19             | 102±22                  | 99±13‡         | 90±19‡         | 78±22†         |  |
| Non-HDL cholesterol — mg/dl  | 188±25             | 153±28‡                 | 139±26‡        | 133±32‡        | 101±31†        |  |
| Total cholesterol — mg/dl    | 230±20             | 197±27‡                 | 171±30†        | 168±33↑        | 134±29†        |  |
| HDL cholesterol — mg/dl      | 42±12              | 44±16                   | 32±5           | 35±4           | 33±10          |  |
| Apolipoprotein AI — mg/dl    | 146±15             | 143±36                  | 115±15†        | 112±13†        | 105±23†        |  |
| Apolipoprotein C-III — mg/dl | 12.8±3.2           | 9.1±3.8                 | 4.2±2.3†       | 5.7±3.1†       | 3.8±1.0†       |  |
| Lipoprotein (a) — nmol/liter | 32±21              | 71±69                   | 13±12          | 18±24          | 5±8†           |  |

NEJM 2017;377:222

# Lowering Remnant cholesterol with Apo-CIII-antisense

'Remnant' cholesterol is next on the list Apo-CIII antisense reduces TG and remnant cholesterol




*NEJM* <u>2017</u>;377:222

# **Consultation "Lipides" aux HUG**

- Consultation conjointe des **Services de Cardiologie** et **d'Endocrinologie** Prof. François Jornayvaz, Prof. Georg Ehret, Prof. François Mach
- Infirmière coordinatrice: Mme Elise Guillermet Tél: 079-553 55 08 Fax: 022-372 50 18 elise.guillermet@hcuge.ch



# **CV Risk factors & lifestyle**



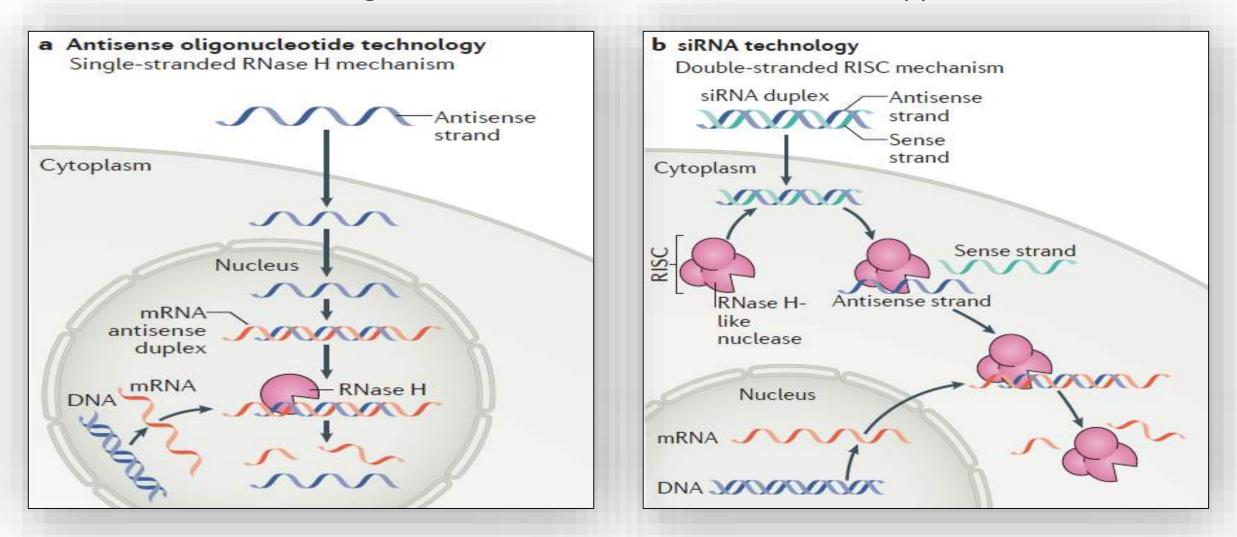
**CENTRAL ILLUSTRATION** 5 Combined Low-Risk Behaviors and the Population Preventable Proportions of MI

The combination of the 5 low-risk dietary and lifestyle factors, the proposed intermediate biological factors, and the population preventable proportions of myocardial infarction.

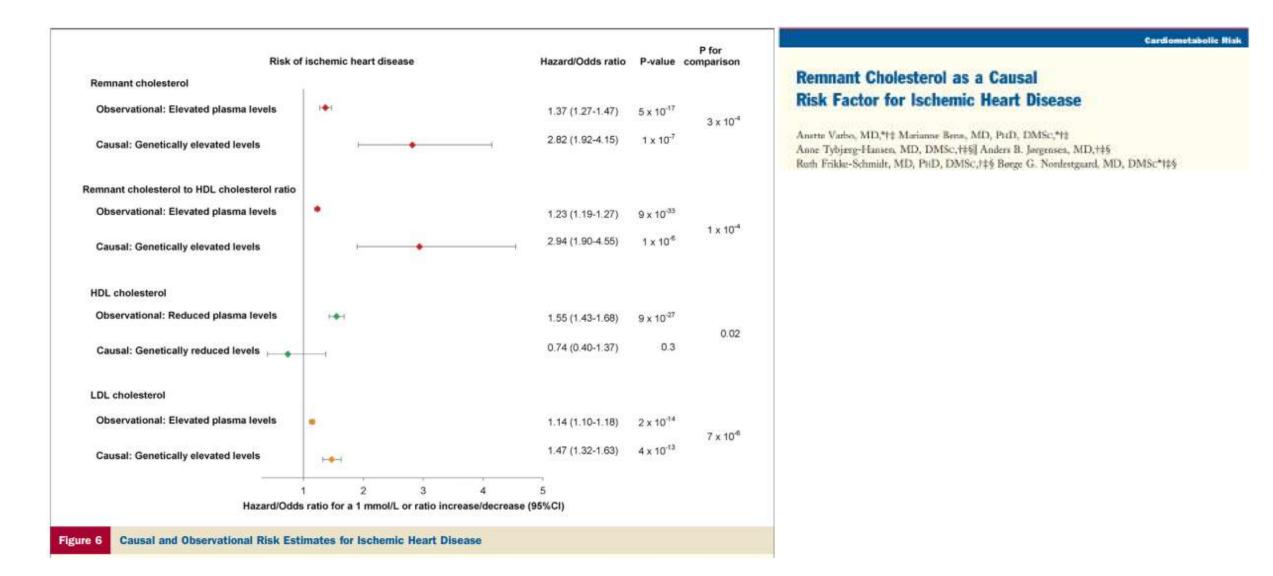
JACC 2014;64:93:12997

Service de cardiologie / HUG

Colloque multidisciplinaire de formation continue, cardiologie et chirurgie cardio-vasculaire Genève, le 27 mai 2021


# Merci pour votre attention






# **Genetic-therapy to reduce blood-lipid-levels**

Antisense oligonucleotide-based versus siRNA-based approaches



# Remnant cholesterol causally related to CVD-risk: Mendelian Randomization

